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Chapter 1

Introduction

1.1 What is turbulence?

Most flows occurring in nature and in engineering applications are turbulent. This
can be easily observed in our every day’s life. The water in rivers or waterfalls is tur-
bulent. The smoke out of a chimney does not rise linearly, but we notice whorls and
eddies of all sizes. Watching the motion of dancing leaves on a stormy autumn day
indicates that the air motion is strongly turbulent. On a larger scale, the atmosphere
of the earth is most of the time turbulent as are the water currents in the oceans. The
air or water behind a moving car, airplane or ship is not calm, but highly turbulent.
All these flows have in common that they are very unsteady and irregular, they look
chaotic and unpredictable. Furthermore, always a large number of different length
scales is involved. There exist many concepts of turbulence. However, most of them
assume ideal flows, i.e., isotropic, homogeneous and stationary flows. We will intro-
duce some of these concepts first. Obviously, most of the above given examples are
in a way nonideal, in the sense that they may be anisotropic or inhomogeneous, as
e.g. the flow in a river, or non-stationary as e.g. the pulsed flow through a pipeline.
Some of these nonideal properties are the subject of this thesis.

The governing equation of fluid motion, the Navier-Stokes equation, is the con-
servation law of momentum:

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = −1

ρ
∇p(x, t) + ν∆u(x, t). (1.1)

It is known since 150 years [1]. Here u(x, t) is the velocity field, ρ the density
of the fluid, p the pressure, and ν the kinematic viscosity. We restrict ourselves to
incompressible flows, i.e., the density of the fluid is assumed to be constant. The

1



2 1.1. WHAT IS TURBULENCE?

conservation of mass reflected in the continuity equation then reduces to

∇ · u(x, t) = 0. (1.2)

These two equations are completed by boundary conditions, often represented by an
additional external driving force term (+f(x, t) on the right hand side of Eq. (1.1)).
In addition, other external forces may be added. The basic general properties of tur-
bulence can be understood from the two equations. However, it is not possible to find
solutions for all details, and in particular, to understand the tremendous amount of
applications arising due to all kinds of different boundary conditions. The nonlinear
term in Eq.(1.1) is the origin of the chaotic and self-similar behavior of the velocity.
It is also this term which causes the ability of turbulent flows to mix the fluid much
more efficiently than laminar flows.

How can we decide whether a flow is laminar or turbulent? There is one dimen-
sionless parameter, defined by typical length and velocity scales L and U together
with the kinematic viscosity ν, the Reynolds number (O. Reynolds (1883), [2])

Re ≡ UL

ν
. (1.3)

L and U are determined by the boundary conditions or the external stirring force f ,
which acts on the scale L and produces velocity differences on this scale of size U .
If we write the Navier-Stokes equation in nondimemsional form by introducing the
dimensionless time t̃ = tU/L, length x̃ = x/L and velocity ũ = u/U , the Reynolds
number determines the relative weight between the linear viscous term ∝ ν∆u and
the nonlinear term ∝ u · ∇u:

∂ũ(x̃, t̃)

∂t̃
+ ũ(x̃, t̃) · ∇̃ũ(x̃, t̃) = −∇̃p̃(x̃, t̃) +

1

Re
∆̃ũ(x̃, t̃) (1.4)

with p̃ = p/(ρU 2). If the product UL is much larger than the viscosity, i.e., Re
is large, then the nonlinear term in the Navier-Stokes equation dominates the linear
term, meaning that the convective transport of energy in the flow is larger than the
energy loss by viscous dissipation. Turbulent flows have large Reynolds numbers.
Different flows with different U , L, and ν but with the same Reynolds number obey
to the same dimensionless equation if their velocities are scaled by U , lengths by L
and times by L/U . Consequently, the physical properties of different flows with the
same Reynolds number are similar.

Turbulence can be maintained only if an external stirring force or the boundaries
continuously introduce energy into the system. This energy is dissipated by viscous
forces. In this sense, a turbulent flow is not a closed system, but energy travels
through it all the time. A basic concept has been introduced by Richardson (1922)
[2, 3], namely the energy cascade in turbulent flows. The idea is, that the energy
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is fed into the fluid system by the driving forces on a large length scale, i.e., the
forcing produces large eddies of sizes comparable to the characteristic length scale
L. The eddies have large Reynolds numbers, Re = LU/ν. It is observed that they
are unstable. They break up and transfer their kinetic energy to smaller eddies. These
eddies again split into smaller ones, and so on. The energy cascade continues until
the resulting eddies are stable, i.e., the Reynolds number of these eddies of scale l,
Re(l) = lu(l)/ν, is small enough. Then, the viscous linear term in Eq.(1.1) is larger
than the nonlinear term and the kinetic energy is dissipated by viscosity. Of course,
in a statistically stationary situation, the total energy dissipation rate ε = ν〈〈 ∂ui

∂xj

∂ui
∂xj

〉〉
must equal the amount of energy which was originally put into the system by the
driving force or via the boundaries. This implies ε = 〈〈fiui〉〉. The brackets 〈〈...〉〉
denote the temporal and spatial average.

The idea of the energy cascade also enters in the classical K41 scaling theory
by Kolmogorov [4], Obukhov [5], Heisenberg [6], Weizsäcker [7], and Onsager [8]
from the 1940’s for the moments of velocity differences

vr ≡ u(x + r) − u(x) (1.5)

in fully developed turbulence. There is an inertial subrange (ISR), where the energy
is solely transferred from larger to smaller scales by the energy cascade mechanism.
In this range, the only relevant physical quantity is the dissipation rate ε. Dimensional
arguments then lead to scaling laws for the moments 〈〈vn

r 〉〉 as

〈〈vn
r 〉〉 ∝ (εr)ζn , with ζn = n/3. (1.6)

On very small scales instead, viscosity becomes more important. In this range, the
viscous subrange (VSR), where most of the energy dissipation occurs, the moments
scale like 〈〈vn

r 〉〉 ∝ rn. The crossover between the two scaling regimes takes place at

r ' 9η, where η is the Kolmogorov dissipation scale η ≡
(

ν3

ε

)1/4
, [2, 9].

In a variable-range mean-field theory by Effinger and Grossmann [10] it is
shown that these scaling exponents for the second order velocity structure function
D(r) = 〈〈v2

r〉〉 can be derived from the Navier-Stokes equation within that theory
without using dimensional analysis. This theory uses a scale-dependent decomposi-
tion of the velocity field. Also the crossover scale and the Kolmogorov constant b,
which is the prefactor in the scaling law for the second order structure function, i.e.,
D(r) = b(εr)2/3, can be determined from this theory in accordance with experimen-
tal data. This method will be used in parts of this present work.

A turbulent velocity signal is strongly fluctuating in space and time. The velocity
behaves intermittently, meaning that there are calm periods and sudden bursts of
strong fluctuations. Also the energy is not directly transported from large to small
scales, but there is considerable transport of energy from small to large scales, as
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well. Only on average, the energy is transported down the energy cascade. These
fluctuations lead to deviations from the K41 scaling exponents: the intermittency
corrections. The latter are particularly large for the higher order moments, ζn < n/3
for n > 3, [2]. For the second order velocity structure function the deviations are
only small, ζ2 ' 0.7 instead of 2/3. The mean-field approach [10] neglects these
fluctuations, and therefore reproduces the K41 scaling of the second order structure
function D(r) = b(εr)2/3.

These concepts of turbulence all use the properties of ideal turbulence, i.e., they
assume isotropy, homogeneity, and statistical stationarity. However, as was pointed
out in the beginning of this chapter, for almost all realistic flows at least one of these
assumptions is not valid. In other words, most of the time we have to deal with
nonideal turbulence. The question, which immediately arises is, whether the basic
properties of turbulence are changed in nonideal turbulent flows. In this thesis we will
study some aspects of nonideal turbulence on a fundamental level. The variable-range
mean-field theory is a powerful tool for this purpose and will be used extensively.
Consequently, intermittency corrections will not be considered, but we will focus
on the mean-field properties of nonideal turbulent flows. Only in Chapter 4 we will
study numerical models including turbulent fluctuations in order to compare with the
mean-field results.

Still, nature is much more complicated. Usually, not only one of the above men-
tioned ideal properties are broken. Furthermore, we have to deal with compressibil-
ity, multi-phase flows, etc. One striking example from nature which can be explained
within a simplified model is studied in Chapter 5. It is the snap of the snapping
shrimp.

1.2 Nonideal turbulence – a guide through the chapters

In Chapter 2 (see also Scaling Exponents in Weakly Anisotropic Turbulence from the
Navier-Stokes Equation [11]) we consider a turbulent flow which is homogeneous
and statistically stationary, but is driven by weakly anisotropic forces. As an ex-
ample we may regard a shear flow far enough away from the boundaries to ensure
homogeneity. The variable-range mean-field theory [10] can be extended to this case
of weak anisotropy and scaling laws for the second order structure function can be
derived.

In general, the second order structure function is a tensor, i.e.,

Dik(r) = 〈〈vi(r)vj(r)〉〉, (1.7)

where vi(r) ≡ ui(x + r, t) − ui(x, t). By projecting the velocity difference either
onto the direction of the distance vector r or onto the directions perpendicular to it,
this tensor can be decomposed into its longitudinal and transversal parts, respectively.
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For a long time the scaling properties of turbulence have been studied mainly in terms
of the longitudinal velocity structure function [9, 12]. This was mainly because these
structure functions are easier to access in experiments. However, evidence has been
found, that the transversal structure functions scale differently [13–17]. Instead of
decomposing it into its longitudinal and transversal components, Arad et al. [18]
suggested choosing a different decomposition. Namely, the structure function tensor
is decomposed into its SO(3) invariants, reflecting the rotational symmetry of the
Navier-Stokes equation:

Dik(r) =
∑

jmq

djmq(r)B
jmq
ik (r̂), (1.8)

with basis tensors Bjmq
ik (r̂), depending on the unit vector r̂, and amplitudes djmq(r).

In this decomposition, isotropic and anisotropic parts of the structure function can
be easily distinguished, as all isotropic contributions are collected in the j = 0 sec-
tor. Within the decomposition into longitudinal and transversal parts, on the other
hand, isotropic and anisotropic contributions are mixed, and therefore, those struc-
ture functions may not show a clean scaling behavior at all. Within the variable-range
mean-field theory we calculate the scaling behavior of the amplitudes djmq(r). For
the isotropic part we find Kolmogorov scaling dj=0 ∝ r2/3, whereas the scaling of
the anisotropic parts is found to depend on the type of the external stirring force.

In the Chapters 3 and 4 we come back to homogeneous and isotropic turbu-
lence, but we assume a time dependent driving of the flow. Time dependent driv-
ing forces are ubiquitous: be it the periodic heating of the sun driving the atmo-
sphere of the earth or the heart beats which drive the blood flow through the arteries.
Many other biological and atmospherical as well as engineering flows are driven
by time dependent driving forces which are often periodic. Here, we study a fully
developed turbulent flow driven by a modulated energy input rate or a modulated
force. Both cases are similar, but not exactly equal. The response of the flow can be
studied in terms of the second order structure function on the outer length scale L,
D(L, t) = 〈〈v(L, t)2〉〉, the Reynolds number Re(t) = u1,rmsL/ν, or the total energy
of the system E(t) = 3

2u2
1,rms.

The picture of the energy cascade suggests that the energy, which is fed into the
system on large scales and is dissipated mainly on small scales, stays some time in
the system while it is traveling down the cascade. On average (in time), of course the
total dissipation rate ε equals the energy input rate. On the other hand, at a certain
time t the energy dissipation rate ε(t) will depend on the amount of energy put into
the system at an earlier time t − τ , where τ is the average time the energy needs to
travel down the energy cascade. Using this picture, the response of the system can be
calculated within the variable-range mean-field theory. This is shown in Chapter 3
(see also Response maxima in modulated turbulence [19]). The finite energy cascade
time scale τ plays a crucial role in this theory. For driving frequencies larger than
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' 1/τ the system can follow less and less the oscillations of the driving. Further-
more, the time scale τ gives rise to maxima and minima of the response amplitude at
frequencies connected with this time scale.

As mentioned before, turbulent fluctuations are not included in the mean-field
theory. In real turbulence, on the other hand, the cascade time scale will be fluctuat-
ing. This may have an influence on the response maxima, i.e., they may be washed
out. Therefore, in Chapter 4 we study modulated turbulence within two numerical
models of turbulence, namely the GOY shell model1 [20–27] and the reduced wave
vector set approximation (REWA) [28–30] of the Navier-Stokes equation, in order
to account for the effect of turbulent fluctuations (see also Numerical simulations of
modulated turbulence [31]). The mean trend of the response function as predicted
by the mean-field theory can be reproduced. Furthermore, we find the main response
maximum in the simulations of both models, although it is weakened and broadened
due to the fluctuations.

In Chapter 5 (see also How snapping shrimp snap: Through cavitating bub-
bles [32, 33]) an example from nature of nonideal turbulent flow is presented. The
snapping shrimp produces a loud snapping sound while rapidly closing its snapper
claw. These animals emit a high velocity water jet during the claw closure. The
snapping is used for intra-specific communication as well as to stun or even kill prey
animals [34–36]. The snapping sound, however, was commonly attributed to the me-
chanical noise from the two claw surfaces hitting each other. In experiments [32, 33]
it was found that a cavitation bubble is growing due to the pressure drop produced
by the high velocity of the jet. Subsequently, this bubble collapses violently. It
was demonstrated that rather than mechanical noise, it it this collapse of a cavitation
bubble which is the origin of the loud snapping sound. Here, we not only have a
inhomogeneous, anisotropic and time dependent turbulent water jet, but, in addition,
there is a cavitation bubble filled with a (compressible) gas, which is mostly water va-
por. A simplified model for the dynamics of the bubble based on a Rayleigh-Plesset
type equation is set up. The agreement between the model results and experimental
data for the time dependence of the bubble radius as well as the emitted sound is
surprisingly good as the model assumes several simplifications of the system.

The main results of our studies on nonideal turbulence will be summarized and
discussed in Chapter 6.

1named after Gledzer, Ohkitani and Yamada
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Chapter 2

Scaling Exponents in Weakly

Anisotropic Turbulence from the

Navier-Stokes Equation ∗

The second order velocity structure tensor of weakly anisotropic strong turbu-
lence is decomposed into its SO(3) invariant amplitudes dj(r). Their scaling is
derived within a scaling approximation of a variable-scale mean-field theory of
the Navier-Stokes equation. In the isotropic sector j = 0 Kolmogorov scaling
d0(r) ∝ r2/3 is recovered. The scaling of the higher j-amplitudes (j even) de-
pends on the type of the external forcing that maintains the turbulent flow. We
consider two options: (i) For an analytic forcing and for decreasing energy in-
put into the sectors with increasing j, the scaling of the higher sectors j > 0
can become as steep as dj(r) ∝ rj+2/3. (ii) For a non-analytic forcing we obtain
dj(r) ∝ r4/3 for all nonzero and even j.

2.1 Introduction

In the last few decades scaling in fully developed turbulence was mainly analyzed in
terms of the longitudinal velocity structure functions [1, 2]. Meanwhile experimental
and numerical evidence has accumulated that at least for finite Reynolds numbers
the transversal structure functions scale differently [3–7]. Two questions immedi-
ately arise: (i) What is the proper decomposition of the velocity structure tensor into

∗See also S. Grossmann, A. von der Heydt, and D. Lohse, Scaling exponents in weakly anisotropic

turbulence from the Navier-Stokes equation, J. Fluid Mech. 440, 381 (2001)

9
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invariant amplitudes, and (ii) what is the origin of their different scalings?
In addressing the first question, Arad et al. [8] suggested to decompose the

second-order velocity structure tensor into the amplitudes djmq(r) of the irreducible
SO(3) representation,

Dik(r)= 〈〈vi(r, t)vk(r, t)〉〉 =
∑

jmq

djmq(r)B
jmq
ik (r̂), (2.1)

reflecting the rotational symmetry of the Navier-Stokes equation. Here, vi(r, t) =
ui(x + r, t) − ui(x, t) is the velocity difference, the brackets 〈〈...〉〉 denote the en-
semble average and, as in reference [8], the tensors B jmq

ik (r̂) are combinations of the
spherical harmonics Yjm(r̂) and operations like ∂ri , rk, δik, the index q labels the
different types of such combinations, and r̂ denotes the unit vector in the direction of
r, r̂ = r

r . Nonzero values of j contribute to Dik if the turbulence is not isotropic.
In the references [9–13] the scaling exponents of the amplitudes dj(r) were ex-

tracted from experimental as well as numerical data. For j = 0 a scaling exponent
close to the Kolmogorov value 2/3 was recovered, but for j = 2 values close to
4/3 were found. This scaling exponent corresponds to a power spectrum ∼ k−7/3, a
behavior first suggested for shear flow by Lumley [14] through a dimensional argu-
ment. Experimental evidence for it was found by Wyngaard and Cote [15] and, later,
also by Saddoughi and Veeravalli [16], among others. For higher j > 2 Biferale and
Toschi [17] have found even larger scaling exponents from the analysis of numerical
data, namely 1.67–1.7 for j = 4 and 3.3–3.4 for j = 6.

Here we aim at analytically calculating the mean-field part of the scaling ex-
ponents of the j amplitudes from the Navier-Stokes equation for weakly anisotropic,
homogeneous turbulence. We employ the variable-scale mean-field theory of Effin-
ger and Grossmann [18], i.e., we disregard intermittency corrections.

2.2 The Effinger-Grossmann mean-field theory for the weakly

anisotropic case

The main idea in reference [18] is to decompose the velocity field into a smooth part
u

(r)
i , defined as spatial average over a sphere with variable radius r and therefore con-

taining only scales larger than r, and a strongly varying part ũ
(r)
i , to which the scales

smaller than r contribute. Within the Effinger-Grossmann theory, not only the K41
r-scaling exponent 2/3 of the structure function can be analytically calculated from
the Navier-Stokes equation, but also the Kolmogorov constant b = 6.3. As we now
assume (weak) anisotropy of the flow, we introduce an average which reflects its scale
r and, in addition, the direction of the averaging. Therefore, for each component, we
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choose an average over a line in r̂-direction with the length 2r,

u
(r)
i (x, t) =

1

2r

∫ r

−r
ui(x + yr̂, t)dy ≡ 〈ui(x + yr̂, t)〉(r)

y . (2.2)

Correspondingly, ũ
(r)
i (x, t) = ui(x, t) − u

(r)
i (x, t). The upper index r says, that

these averages not only depend on the scale r, but also on the direction r̂ of averaging,
thus on the full vector r. The lower index y indicates the averaged variable. As in the
original spherical averaging case there is a close relation between the second order
moments of u

(r)
i and the structure tensor Dik(r):

〈〈u(r)
i u

(r)
k 〉〉 = 〈〈uiuk〉〉 −

1

2
〈〈Dik(y1 + y2)〉(r)

y1
〉(r)
y2

. (2.3)

This relation is crucial for the method. For simplicity we use the abbreviation y =
yr̂. In the above double average y1 is thus parallel to y2.

Eliminating the pressure p renders a nonlocal term involving the Green function
G(x). Inserting the velocity decomposition into the Navier-Stokes equation and av-
eraging, we obtain an equation of motion for the large scale (“super-scale”) velocity:

∂tu
(r)
i (x, t) = −u

(r)
j (x, t)∂xj u

(r)
i (x, t) − 〈ũ(r)

j (x + yr̂)∂xj ũ
(r)
i (x + yr̂)〉(r)

y

+ν∆xu
(r)
i (x, t) + f

(r)
i (x, t)

+

∫

d3x′G(x′)∂x′

i
{u(r)

k|l (x + x′, t)u
(r)
l|k (x + x′, t)

+〈ũ(r)
k|l (x + x′ + yr̂, t)ũ

(r)
l|k (x + x′ + yr̂, t)〉(r)

y }. (2.4)

We use the abbreviation: ui|k(x, t) := ∂xk
ui(x, t), etc. ∆x denotes the Lapla-

cian with respect to x. ν is the kinematic viscosity and fi an external forcing main-
taining the turbulent flow. In reference [18] isotropic forcing is considered. Here, by
proper choice of fi we explicitly introduce anisotropy. It implies an anisotropic en-
ergy input whose characteristic details will be discussed later. Subtracting (2.4) from
the Navier-Stokes equation gives an equation for the “sub-scale” velocity ũ

(r)
i . Its

formal solution can be found by time integrating along a Lagrangian path x(t ′; z, t)
of a fluid particle which at time t′ = t is at the position x = z. Also, from Eq. (2.4)
we can derive an energy balance equation for the super-scales.

The central approximation of the mean-field theory of reference [18] is that the
small scale flow is statistically independent of the smooth large scale one. Therefore,
in higher order moments we factorize the u(r) from the ũ(r), e.g.

〈〈ũ(r)ũ(r)u(r)u(r)〉〉 ' 〈〈ũ(r)ũ(r)〉〉〈〈u(r)u(r)〉〉. (2.5)

Physically this means that the large scales feel the small ones as a kind of eddy
viscosity. Note again that this factorization excludes intermittency effects. Another
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assumption is that in the time integration along a Lagrangian path of a fluid particle
the slow t′-dependence of the super-scales u(r) is neglected since the sub-scales ũ(r)

fluctuate on a much shorter time scale.
The resulting contributions to the energy balance can be expressed in terms of

the structure function tensor Dik(r). To simplify the expressions we introduce the

second order moment of the super-scale velocity, R
(r)
ik (r′), and the time integrated

correlation function of the sub-scale eddies, N
(r)
ik (r′). Both can be expressed in

terms of the structure function tensor:

R
(r)
ik (r′) ≡ 〈〈〈u(r)

i (x, t)u
(r)
k (x + y + r′, t)〉〉〉(r)

y (2.6)

= 〈〈uiuk〉〉 −
1

2
〈〈〈Dik(r

′+y1+y2+y3)〉(r)
y1

〉(r)
y2

〉(r)
y3

,

N
(r)
ik (r′) ≡

t
∫

−∞

dt′〈〈ũ(r)
i (z, t)ũ

(r)
k (x(t′;z,t)+r′, t′)〉〉. (2.7)

N
(r)
ik probes the (Lagrangian) dynamics and can be considered as an eddy transport

coefficient for the super-scale flow. To obtain a closed set of equations we express
N

(r)
ik in terms of equal time and therefore stationary static objects like the structure

tensor Dik(r). This is achieved by continued fraction projector expansion [19, 20].
With the static sub-scale correlation

C̃
(r)
ik (x′) ≡ 〈〈ũ(r)

i (x, t)ũ
(r)
k (x + x′, t)〉〉 (2.8)

and the frequency matrix

Γ̃
(r)
ik (x′) ≡ −〈〈ũ(r)

i (z, t)dt′ ũ
(r)
k (x(t′; z, t) + x′, t′)〉〉|t′=t (2.9)

we can write N
(r)
ik in 1-pole approximation as:

N
(r)
ik (x′) = C̃

(r)
ij (x′)(Γ̃(r)(x′))−1

jl C̃
(r)
lk (x′).

The tensor C̃ and the frequency matrix Γ̃ can be expressed in terms of the structure
function tensor

C̃
(r)
ik (x′) = −1

2
〈〈Dik(x

′ + y1 + y2)〉(r)
y1

〉(r)
y2

+ 〈Dik(x
′ + y)〉(r)

y − 1

2
Dik(x

′),

Γ̃
(r)
ik (x′) =

2

3
εδik − 2ν〈∆yDik(y)〉(r)

y

+ν〈〈∆y1Dik(y1 + y2)〉(r)
y1

〉(r)
y2

+ ν∆x′C̃
(r)
ik (x′).

For more details compare with the case of isotropic turbulence in reference [18]. In
a general anisotropic case the dissipation matrix elements ν〈〈u2

i|j〉〉 might be different
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for different i, j. Here, in the weakly anisotropic case, we assume that the anisotropy
corrections are small on the scales where dissipation takes place. Therefore we insert
one total dissipation rate per unit mass ε = ν〈〈ui|jui|j〉〉 (summation implied).

The super-scale energy balance equation consists of three contributions for the
losses. Ed(r) describes the direct viscous energy dissipation by the super-scale ed-
dies. The other two, Et(r), consisting of a local and a nonlocal part, account for the
energy transfer from the large to the small scales. These losses are balanced by the
energy input rate Ein(r) caused by the external forcing:

Ed(r) + Et,lo(r) + Et,nolo(r) = Ein(r). (2.10)

As in [18] the three different contributions can be written:

Ed(r) =
1

2
ν〈〈∆y1Dii(y1 + y2)〉(r)

y1
〉(r)
y2

, (2.11)

Et,lo(r) = −1

2
N

(r)
jk (x′ = 0)∂x′

j
∂x′

k
R

(r)
ii (x′)|x′=0, (2.12)

Et,nolo(r) = −
∫

d3x′G(x′)∂x′

i
∂x′

j

{

∂x′

j
N

(r)
lk (x′) − ∂x′

l
N

(r)
jk (x′)

}

∂x′

k
R

(r)
il (x′)

+

∫

d3x′G(x′)∆x′

(

∂x′

i
N

(r)
lk (x′)

)

∂x′

k
R

(r)
il (x′). (2.13)

The energy input rate is given by

Ein(r) = 〈〈u(r)
i f

(r)
i 〉〉. (2.14)

Note that in contrast to the isotropic case all terms in the energy balance (2.10) now
depend on the vector r, not merely on its absolute value, the scale r.

Eq. (2.10) together with Eqs. (2.11) – (2.14) constitute a set of integro-differen-
tial equations for the tensor Dik(r). Now, anisotropy is assumed to be small. More
precisely, in a SO(3)-decomposition of Dik(r) the j-amplitudes are assumed to de-
crease in magnitude for higher angular wave number j. Then (2.10) can be solved
order by order in j, obtaining the structure function amplitudes dj(r). They will not
be universal but depend on the anisotropy of the forcing. However, what we may
hope is that the scaling of the individual j-amplitudes is universal. To analyze this, it
is sufficient to focus on the scaling behavior of the various contributions in (2.10).

Scale wise, multiple spatial averages can be reduced to first order ones, e.g.
Ed(r) ∼ν

2 < ∆yDii(y) >
(r)
y , and local and nonlocal energy transfer rates scale with

the same exponent. Here and in the following “∼” has the meaning of “scale wise
equal”. Thus the energy balance equation scale wise simplifies to

Ein(r) ∼ 〈ν
2
∆yDii(y)〉(r)

y + 〈α
ε
Djl(r)Dlk(r)∂yj ∂yk

Dii(y)〉(r)
y . (2.15)
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Here, ε is the mean energy dissipation rate per unit mass, and the constant α takes
into account the relative weight of the transport terms, Et in (2.10). Scale wise this
equation can be simplified even further:

Ein(r) ∼ 1

2

(

ν +
β

ε
D(r)D(r)

)

∆D(r), (2.16)

where β takes into account the missing constants of proportionality. DD and ∆D
stand for the tensorial products of two structure function tensors and of a 2nd order
spatial derivative of the structure function tensor, respectively.

2.3 SO(3)-decomposition

Taking into account the full tensorial character of Dik(r) (Eq. (2.1)) complicates the
resulting equation. Therefore, for simplicity, we assume that the r-scaling behavior
remains the same. As we are interested at present in the scaling exponents only, we
disregard the tensorial character of the structure function (i.e., drop the index q of
djmq(r)) and expand into spherical harmonics:

D(r) ' d00(r)Y00 +
∑

m

d2m(r)Y2m(r̂) +
∑

m

d4m(r)Y4m(r̂) + ...

∼
∑

j

dj(r)
∑

m

Yjm(r̂). (2.17)

Here, we assume that the scaling behavior of djm(r) is - for fixed j - the same for all
m, and therefore simply write dj(r). We analogously expand the energy input rate
into spherical harmonics:

Ein(r) =
∑

j,m

ejm(r)Yjm(r̂) ∼
∑

j

ej(r)
∑

m

Yjm(r̂), (2.18)

where

ejm(r) =

∫

d(cos θ)dϕ Y ∗
jm(r̂)Ein(r). (2.19)

Then we insert the SO(3)-decomposition (2.17) of the structure function and the cor-
responding expansion (2.18) of the energy input rate into Eq. (2.16).

From now on we only focus on the inertial subrange (ISR), η � r � L, where
η is the Kolmogorov length, in which the second term on the right hand side of Eq.
(2.16) dominates. Thus the energy balance equation reads:

∑

j

ej(r)
∑

m

Yjm(r̂) ∼ β

r2

(

∑

j

dj(r)
∑

m

Yjm(r̂)
)3

. (2.20)
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Projecting Eq. (2.20) on the different j-sectors and taking into account only the first
three j’s (j = 0, 2, 4) yields three nonlinear equations for d0(r), d2(r) and d4(r):

e0(r)r
2 ∼ β[A000,0(d0(r))

3 + 3A022,0d0(r)(d2(r))
2 + 3A044,0d0(r)(d4(r))

2

+A222,0(d2(r))
3 + 3A224,0(d2(r))

2d4(r) + 3A244,0d2(r)(d4(r))
2

+A444,0(d4(r))
3], (2.21.a)

e2(r)r
2 ∼ β[3A002,2(d0(r))

2d2(r) + 3A022,2d0(r)(d2(r))
2

+3A044,2d0(r)(d4(r))
2 + 6A024,2d0(r)d2(r)d4(r)

+A222,2(d2(r))
3 + 3A224,2(d2(r))

2d4(r)

+3A244,2d2(r)(d4(r))
2 + A444,2(d4(r))

3], (2.21.b)

e4(r)r
2 ∼ β[3A004,4(d0(r))

2d4(r) + 3A022,4d0(r)(d2(r))
2

+3A044,4d0(r)(d4(r))
2 + 6A024,4d0(r)d2(r)d4(r)

+A222,4(d2(r))
3 + 3A224,4(d2(r))

2d4(r)

+3A244,4d2(r)(d4(r))
2 + A444,2(d4(r))

3]. (2.21.c)

Here, Aj1j2j3,j4 =
∑

m1,m2,m3,m4

∫

d(cos θ)dϕ Y ∗
j4m4

Yj1m1Yj2m2Yj3m3 . The
Aj1j2j3,j4 can have either sign.

To extract the scaling laws for the different dj(r), Eqs. (2.21.a-c) have to be
solved. But before doing so, we have to specify the energy input rate Ein(r), Eq.

(2.14), which depends on the external forcing f
(r)
i .

2.4 Anisotropic forcing

In the isotropic and homogeneous case Ein(r) = Ein is a scale-independent con-

stant, [18]. The reason is the following. While the super-scale velocity field u
(r)
i

contains all scales larger than r, the forcing f
(r)
i has the outer scale L only. For

each r ≤ L the complete forcing is included in the same and therefore r-independent
way. Of course, Ein = ε. In the present case, however, the forcing has to provide
an anisotropic flow. As a consequence we shall find that f

(r)
i has to depend on all

scales r, implying that also the energy input rate will depend on all r.
We will discuss two different classes of anisotropic flows: a general analytic

forcing and a non-analytic forcing. For both we can determine the scaling behavior
with dimensional arguments.

2.4.1 Analytic forcing

Let us assume that the forcing fi(x) ∼ aik · r sin(k · x) and the velocity profile
ui(x) ∼ bik ·r sin(k ·x) depend on one input wave number k only. They are analytic
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in the components of position x and the scale vector r. To fulfill the incompressibility
condition, ∂ifi = 0 and ∂iui = 0, the vectors ai and bi must be chosen as aiki =

biki = 0. Then, applying the y-average defined in Eq. (2.2) yields u
(r)
i ∼ f

(r)
i ∼

[cos(k · (x + r)) − cos(k · (x − r))]. Therefore

Ein(r) ∼ 〈〈(cos(k · (x + r)) − cos(k · (x − r)))2〉〉 = 1 − cos(2krξ) (2.22)

with ξ = cos θ, the projection on the z-axis defined by k̂. A power series expansion
of Ein(r) in the variable rξ inserted into Eq. (2.19) implies (because of ξn ⊥ Yjm

for all n < j) that ejm ∼ rj plus higher powers.
We now solve Eqs. (2.21.a-c) and extract the power laws for the different dj(r).

Fig.2.1 shows the solutions of the Eqs. (2.21.a-c). In the upper graph (a) the isotropic
part of the energy input e0 is the largest one, and the anisotropy contributions are
small corrections. In this case, over the whole calculated range 10−4 ≤ r/L ≤ 1 the
dj(r) scale as

dj(r) ∼ rj+2/3. (2.23)

We can see this scaling behavior easily from Eqs. (2.21.a-c): Since d4 � d2 � d0,
the dominating term on the right hand side of Eq. (2.21.a) is A000,0(d0)

3. It is bal-
anced by e0r

2. Therefore, d0 ∼ r2/3. Then, in Eqs. (2.21.b,2.21.c) the leading
terms A002,2(d0)

2d2 and A004,4(d0)
2d4 are balanced by e2r

2 ∼ r4 and e4r
2 ∼ r6,

respectively. Therefore we expect d2 ∼ r8/3 and d4 ∼ r14/3. Though for j = 0
we recover the mean-field scaling of the isotropic amplitude of the structure function
d0 ∼ r2/3, as in [18], the result for the j = 2 sector is at variance with the experi-
mental finding by Kurien et al. [12], who found a scaling exponent close to 4/3. If,
on the other hand, we chose a strongly anisotropic energy input with e2 � e0, e4

1,
then the r-scaling range with dj(r) ∼ rj+2/3 becomes smaller, while at larger values
of r a new scaling range dj ∼ r4/3 with the same exponent 4/3 for all j emerges, see
Fig.2.1(b). For j = 2 this finding is now consistent with the experimental observa-
tions by Kurien et al. [12]. However, it is inconsistent with the exponent 2/3 to be
expected for the j = 0 amplitude. – In summary, the analytic energy input does not
seem to describe the experimental findings. We therefore now explore the option of
non-analytic forcing.

2.4.2 Non-analytic forcing

We consider a shear flow with its shear in 3-direction. Then the three f-components
are different. We decompose the velocity ui and the forcing fi into an isotropic (iso)
and a (smaller) anisotropic (an) part: ui = u

(iso)
i + u

(an)
i , fi = f

(iso)
i + f

(an)
i . Then

1In this case the assumption of weak anisotropy of course breaks down.
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Figure 2.1: Scaling behavior of the amplitudes of the second order structure function d0(r),

d2(r) and d4(r), for an analytic forcing. (a) Strong isotropic forcing together with weak

anisotropy corrections, e0/ε = 0.89, e2/ε = 0.1, e4/ε = 0.01; (b) Case of strong anisotropic

forcing: The first anisotropic sector j = 2 dominates the energy input, e0/ε = 0.001, e2/ε =

0.989, e4/ε = 0.01. This might already reach the limits of our assumptions regarding weak

anisotropy. The dip of the d0-curve originates from a change of sign of d0(r).
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in first order of anisotropy

〈〈u(r)
i f

(r)
i 〉〉 ' 〈〈u(r)

i f
(r)(iso)
i 〉〉 + 〈〈u(r)(iso)

i f
(r)(an)
i 〉〉

= E
(iso)
in + E

(an)
in (r). (2.24)

Repeating the arguments at the beginning of Section 2.4 for the isotropic case the first
term on the right hand side does not depend on r, i.e., E

(iso)
in ∼ r0. Namely, since

f
(r)(iso)
i has scales of order L only, the smaller scales in the products with u

(r)(iso)
i or

u
(r)(an)
i cannot contribute irrespective of their degree of isotropy. The second term,

however, will depend on r and introduces anisotropy.
Let us determine E

(an)
in (r) by scaling arguments. The flow profile in shear

flow is generated by the boundary conditions: One plate is moving with veloc-
ity U , the other one is at rest. These boundary conditions have to be mimicked
by the forcing f in an infinitely extending flow. The linear mean velocity profile
U
L z (and therefore also the corresponding f ) has Fourier coefficients on all scales,

u(an)(k) = U
L2

∫ L
−L dz zeikz = 2iU

(

sinkL
k2L2 − cos kL

kL

)

. In the case of large k, i.e.,

k−1 ∼ z � L, the second term dominates. We therefore asymptotically find

u(an)(k) ∼ cos kL

kL
∼ 1

k
∼ z = r cos θ. (2.25)

Incidentally, a parabolic velocity profile as in pipe flow, U
L2 z2, gives the same asymp-

totic scaling, u(an)(k) ∼ sinkL
kL ∼ 1

k ∼ z for large k.
Next, we determine the r-dependence of f (an). From the Navier-Stokes equa-

tion we have ∂u
∂t = ... + f . Therefore, the dimension and r-scaling of f must cor-

respond to that of u/τ , where τ is eddy turnover time of eddies of scale r. In the
isotropic case the turnover time τ scales like τ(r) ∼ r

u(r) ∼ r
r1/3 ∼ r2/3. We use

the r-dependence of the anisotropic velocity field u(an)(r) together with that of the
isotropic turnover time τ(r) to estimate the scaling of the anisotropic forcing f (an)

in first order. Since u(an) behaves as u(an) ∼ r cos θ according to Eq. (2.25), we
have f (an) ∼ r cos θ/r2/3 ∼ r1/3 cos θ. Note that this anisotropic forcing scales as

the isotropic velocity u(iso) ∼ r1/3. Then both factors of E
(an)
in (r) in (2.24) not only

contain all scales, but also the same power law exponents. We therefore find

E
(an)
in (r) ∼ r2/3 cos θ. (2.26)

The forcing still has an additional factor g(θ, ϕ), which can be chosen such that the
incompressibility constraint ∂ifi = 0 is fulfilled. Knowing now the scaling behavior
of the energy input rate, we proceed to expand it into spherical harmonics (see Eq.
(2.18)),

Ein(r) = E
(iso)
in + r2/3Ẽ

(an)
in (r̂) =

∑

j,m

ejm(r)Yjm(r̂). (2.27)
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Figure 2.2: Scaling dependence of the amplitudes d0(r), d2(r) and d4(r) of the second order

structure function, in case of a non-analytic forcing. The forcing is assumed as predominantly

isotropic with small anisotropy corrections, e0/ε = 0.89, e2/ε = 0.1, e4/ε = 0.01.

Here, e00(r) equals E
(iso)
in , while for j > 0 the input rate amplitudes are ejm(r) =

∫

d(cos θ)dϕ Y ∗
jm(r̂)E

(an)
in (r). Here the r- and ξ-dependencies are not coupled as

rξ, in contrast to the above treated analytic case. Thus there is no j-dependence of
the leading r-power of the input amplitudes ejm. The lowest j-value projection of the
anisotropy correction ejm(r), in general j = 2, and all the higher ones, have the same
power law, here according to (2.26) ∼ r2/3. The physics behind this decoupling of the
r- and ξ-dependence is that a shear profile – in contrast to a single input wave number
k – contains all wave numbers. The r-dependence is even non-analytic. Hence no
expansion in rξ with only integer powers holds.

From Eqs. (2.21.a-c) and with d4 � d2 � d0, we find that the leading terms
in Eqs. (2.21.b,2.21.c) are (d0)

2d2 ∼ r8/3 and (d0)
2d4 ∼ r8/3. With d0 ∼ r2/3

from Eq. (2.21.a) this leads to d2 ∼ d4 ∼ r4/3. The solutions of Eqs. (2.21.a-c) for
this non-analytic forcing describing shear flow are shown in Fig.2.2. For j = 0 we
recover the isotropic scaling of the structure function d0(r) ∼ r2/3. However, for all
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higher amplitudes we obtain
dj(r) ∼ r4/3 (2.28)

in a wide range of r. We have shown only the case where the isotropic forcing
dominates, e0 � e2 � e4. If the anisotropic contributions to the energy input
increase, the r-range of scaling behavior d0 ∼ r2/3 and dj ∼ r4/3 for all j ≥ 2 is
again shifted towards smaller r as in the case of analytic forcing.

As was argued by L’vov and Procaccia [21–23], in the exact resummation theory
of Navier-Stokes turbulence no infrared (IR) divergence occurs if all j-factor scaling
exponents ζj are bounded by 4/3. Otherwise IR-divergences cannot be excluded.
Our results in the non-analytic case therefore exclude IR-divergences while in the
previous analytic case they cannot be ruled out. Another possibility how these IR
divergences may be controlled, in spite of second order moment exponents being
larger than 4/3, is by limiting the forcing to scales smaller than L, as recently shown
in a Kraichnan model type dynamics for a vector field, see [24].

2.5 Summary

Within a variable-scale mean-field theory of the Navier-Stokes equation we have de-
rived the scaling exponents of the different j amplitudes of the SO(3)-decomposition
of the second order structure function for weakly anisotropic turbulent flow. The
limitation of this approach is its mean-field character. Clearly, intermittency effects
cannot be captured, but we consider those to be small for second order moments, to
which the method is limited anyhow. In the isotropic sector j = 0 we recover the
classical scaling behavior ∼ r2/3. The higher order contributions, i.e., the anisotropic
parts of the flow field, can be calculated order by order in Yjm. They yield, for all
j, the same mean field scaling r4/3 for a non-analytic forcing, whereas the scaling
is rj+2/3 for an analytic type of forcing. The non-analytic forcing might be more
general, and therefore valid for a larger variety of anisotropic flows. Moreover, only
the results for the non-analytic forcing are consistent with hitherto experimental mea-
surements for the j = 0 and j = 2 amplitudes.
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Chapter 3

Response maxima in modulated

turbulence ∗

Isotropic and homogeneous turbulence driven by an energy input modulated in
time is studied within a variable-range mean-field theory. The response of the
system, observed in the second order moment of the large-scale velocity differ-
ence D(L, t) = 〈〈(u(x+L)−u(x))2〉〉 ∝ Re2(t), is calculated for varying modu-
lation frequencies ω and weak modulation amplitudes. For low frequencies the
system follows the modulation of the driving with almost constant amplitude,
whereas for higher driving frequencies the amplitude of the response decreases
on average ∝ 1/ω. In addition, at certain frequencies the amplitude of the re-
sponse either almost vanishes or is strongly enhanced. These frequencies are
connected with the frequency scale of the energy cascade and multiples thereof.

3.1 Introduction

Many turbulent flows are characterized by time dependent forcing. E.g. the atmo-
sphere of the earth is driven by the heating through the radiation from the sun, the
blood flow in the arteries by the heart beats, etc. Also technical flows like the flow
in the intake of a combustion engine are periodically forced. Another example are
estuaries and adjacent coastal waters, where tidal straining leads to a periodic alter-
nation of stratification and turbulent mixing of saline and fresh water [1]. This results
in a periodically varying energy dissipation in the upper water layers with a 12 hour

∗See also A. von der Heydt, S. Grossmann, and D. Lohse, Response maxima in modulated turbu-

lence, Phys. Rev. E, in press (2003)
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period.
The effect of a periodically increasing and decreasing energy input on turbulent

flow depends on the frequency of the driving. This has been studied in reference [2]
for a turbulent channel flow where the modulations of the input rate are generated
near the wall. It was found that for high frequencies these oscillations are strongly
damped with distance from the walls, such that they do not reach the inner part of the
logarithmic boundary layer. Another example is Rayleigh-Benard convection: the
interaction between the large scale circulating flow and the thermal plumes detach-
ing from the upper and the lower boundary layers acts as a stochastically influenced
time-dependent forcing on the turbulent flow in the inner region of the cell, as recently
shown in [3–5]. In a von Kármán flow between two coaxial corotating disks [6, 7],
the energy input rate is not constant if the disks are kept rotating at constant speed,
but is periodically varying with a geometry-dependent frequency due to a coherent
vortex precessing around the axis of rotation. In this case it was also shown, that the
statistical properties of the turbulent fluctuations are affected by the time dependence
of the mean flow. However, the averaged velocity power spectrum still shows Kol-
mogorov scaling over a broad frequency range, in addition to a low frequency peak
corresponding to the oscillation of the mean flow.

These results raise the question how global quantities of a turbulent flow, like
e.g. the total energy or the Reynolds number, respond to a time dependent energy
input. This problem is the subject of the present chapter. From a more fundamental
point of view, studying modulated turbulence will give more insight into the time
scales in particular of the turbulent energy cascade.

In a previous study [8], the time evolution of the Reynolds number in a periodi-
cally kicked flow was analyzed. If the kicking strength and the kicking frequency are
large enough, the Reynolds number grows and saturates on a level, which depends
on the frequency and the kicking strength. The theoretical results from [8] have later
been verified numerically in reference [9].

In this present chapter, we study a related type of forcing. Rather than peri-
odically kicking the boundary conditions of homogeneous, isotropic turbulence as
in [8], we force the flow through a time-dependent modulation of the energy input
rate ein(t) on the outer length scale L,

ein(t) = e0(1 + e sin(ωt)). (3.1)

This means that the flow is stationarily stirred (∝ e0) to maintain the turbulent flow
and, in addition, a time-dependent modulation of the forcing (∝ e0e) is applied,
0 ≤ e ≤ 1. The response of the system to the time-dependent stirring can be observed
e.g. in the second order velocity structure function of the flow field, in particular at
the outer scale L, D(L, t) = 〈〈(u(x +L, t)−u(x, t))2〉〉. This D(L, t) is equivalent
to a Reynolds number, which we define as Re = u1,rmsL/ν. Here, u1,rms(t) is
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the rms of one component of the velocity, varying with time t. Then, disregarding
correlations on scale L,

D(L, t) = 2〈〈u2〉〉 = 6u2
1,rms(t) =

6ν2Re(t)2

L2
. (3.2)

The energy put into the system at time t will travel down the energy cascade
towards smaller scales and will, on average, be dissipated at time t + τ , i.e., with a
mean time delay τ . In other words, the dissipation at time t depends on how much
energy has been in the large scales at time t − τ . We approximately describe the
relevant time scale τ for the cascade process by the large eddy turnover time τL at
that time t − τ ,

τ ' τL =
L

u1,rms(t − τ)
=

L
√

D(L, t − τ)/6
. (3.3)

More accurately, the time scale of the energy cascade is given by the sum over
the eddy turnover times on all decay steps, τ ' ∑

n τn. In this sum, the largest
contribution is the largest eddy turnover time τL. For K41 scaling the smaller ed-
dies rn/L = δn, where 0 < δ < 1, have turnover times τn = τLδ2n/3. Thus
τ = τL

∑

n δ2n/3 ≡ τLa. The common choice δ = 1/2 implies a ' 2.7. Putting into
intermittency corrections gives slightly smaller values of a. In this present paper we
shall discuss the influence of a by comparing the limiting cases a = 2.7 and a = 1.
Experimentally, in principle the parameter a could be measured by analyzing the po-
sitions, heights and widths of the response maxima, thus giving information about
the energy cascade time.

If the external modulation period ω−1 is much larger than this intrinsic time
scale τ , ωτ � 1, the turbulent flow will have time to adjust and will follow the pe-
riodic variations of the stirring. If, on the other hand, ω−1 is decreased and becomes
much smaller than τ , the system can follow less and less, and feels, at small scales,
an average time-independent energy input.

We calculate the time dependence of the response D(L, t) − D0(L) to a peri-
odically modulated energy input rate, Eq. (3.1), within a variable-scale mean-field
theory [10] for various driving frequencies ω. Here, D0(L) is the second order struc-
ture function for a stationary energy input rate e0. In general, the energy flow rate
through the system is an intermittently fluctuating quantity. Therefore, the cascade
time as well as the response of the system are fluctuating. These fluctuations are
neglected by the mean-field theory in the present study. However, on average these
fluctuations result in a mean down-scale transport of energy which controls the over-
all properties of the flow. Therefore, we believe that within this mean-field approach
we can grasp the main features of the flow correctly.

The method is explained in the next section. The behavior of the response as a
function of the driving frequency ω in the case of weak modulations of the energy
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input rate is analyzed in Section 3.3. In Section 3.4 we discuss an alternative way to
introduce time dependence into the system. The slightly different case of a modulated
driving force instead of a modulated energy input rate is presented in Section 3.5. We
summarize our results in Section 3.6.

3.2 Method and Model

In reference [10] an energy balance equation for the second order velocity structure
function D(r) = 〈〈(u(x + r)−u(x))2〉〉 for stationary, homogeneous, and isotropic
turbulence has been derived within a variable-range mean-field theory. Here, u is the
velocity and the brackets 〈〈...〉〉 denote the ensemble average. One of the essentials
of this theory is to divide the velocity field into a (spatially averaged) super-scale
velocity u(r) and a (strongly fluctuating) sub-scale velocity ũ(r). The spatial average
is performed over a sphere of variable radius r, and will be denoted as u(r)(x) ≡
〈u(x + y)〉(r)y ≡ 3

4πr3

∫

|y|≤r d3y u(x + y).
The energy input rate ein, which in the statistically stationary situation equals

the total energy dissipation rate ε, is balanced in accordance with the super- and
sub-scale decomposition by the energy dissipation rate on all scales larger than r
complemented by the energy transfer across scale r from the super- to the sub-scales
of r. In a simplified version the derived energy balance equation reads:

ein = ε =
3

2

(

ν +
[D(r)]2

b3ε

)

1

r

d

dr
D(r), (3.4)

where ν is the kinematic viscosity and b the Kolmogorov constant. In the viscous
subrange (VSR), where r is smaller than the Kolmogorov length scale η, r < η,
the dissipation term, i.e., the first term on the rhs of Eq. (3.4), is dominating, and
therefore the solution of Eq. (3.4) is D(r) = εr2/(3ν). In the inertial subrange (ISR),
instead, where η � r � L, most of the energy of the eddies is transfered down-scale.
This energy transfer rate Et, which is given by the second term on the rhs of Eq. (3.4),
is determined by the decorrelation rate Γ̃(r) of the sub-scale eddies, which itself is
mainly governed by the energy dissipation rate ε, see [10] for details. Note again that
in the stationary case the energy dissipation rate equals the energy input rate, ε = ein.
In the ISR the second term on the rhs is the leading one. Then the solution of Eq.
(3.4) is D(r) = b(εr)2/3. The full energy rate balance equation (3.4) interpolates
between these two limits. The Kolmogorov constant b can be calculated within this
theory to be b = 6.3 which is consistent with the experimental value [11–14].

In our case the flow is not stationary but experiences a modulated energy input
rate ein(t). Therefore, ein, the structure function D(r), and the dissipation rate ε in
Eq. (3.4) will depend on time. Furthermore, an additional term on the rhs of Eq. (3.4)
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appears, taking into account the non-stationarity of the flow:

ein(t) =
3

2

(

ν +
[D(r, t)]2

b3ε(t)

)

1

r

∂

∂r
D(r, t) (3.5)

+
1

2

∂

∂t
〈〈u(r)(x, t) · u(r)(x, t)〉〉.

The correlation of the super-scale velocities can be written as

〈〈u(r)(x, t) · u(r)(x, t)〉〉 = 〈〈u2(x, t)〉〉 − 1

2
〈〈D(y1 + y2, t)〉(r)y1

〉(r)y2
. (3.6)

Following the arguments in [10] for the derivation of Eq. (3.4), we neglect multiple
spatial averaging, i.e., 〈〈D(y1 + y2, t)〉(r)y1 〉(r)y2 ' 〈D(y, t)〉(r)y .

In the stationary case the energy dissipation rate ε = ν〈〈 ∂ui
∂xj

∂ui
∂xj

〉〉 can be related
to the large scale quantities by

ε = cε

u3
1,rms

L
= cε(D(L))

[D(L)]3/2

63/2L
. (3.7)

Extending this expression to the time-dependent case, we have to take into account
that the energy which is fed into the system on large scales at a time t will be dis-
sipated on small scales at a later time t + τ . We model this as follows: The energy
dissipation rate at time t is assumed to depend on the large scale quantities at time
t − τ :

ε(t) = cε(D(L, t − τ))
[D(L, t − τ)]3/2

63/2L
. (3.8)

cε is a dimensionless function which is approximately constant (' 1) for very large
Reynolds numbers [15, 16]. In [17–19] it was shown that in general cε depends on
the Reynolds number, and therefore on D(L). We here use an approximation of the
expression derived in [17] for high Reynolds numbers:

cε(D(L)) =
9

Re
+

√

(

6

b

)3

+

(

9

Re

)2

(3.9)

'
(

6

b

)3/2

+
9

Re
=

(

6

b

)3/2

+ 9
ν

L

√

6

D(L)
.

The delay time τ is determined by the implicit time-delay equation (3.3). Assuming
that the solution of Eq. (3.4) in the ISR, D(r) = b(εr)2/3, is valid up to r = L,

we can write D(r) =
(

r
L

)2/3
D(L). Within our model, where we connect small and

large scale quantities at different times, the structure function on scale r < L at time
t will depend on the large scale structure function at an earlier time t − τ , i.e., we
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introduce D(r, t) =
( r

L

)2/3
D(L, t− τ) into Eq. (3.5). After multiplying with r, Eq.

(3.5) can be integrated from r = 0 up to the outer length scale r = L:

1

4

d

dt
[D(L, t) − αD(L, t − τ)] = − [D(L, t − τ)]3/2

Lb3/2
(3.10)

−3νD(L, t − τ)

2L2
+ ein(t),

where α = 27
44 originates from the integration. In [10] it has been shown that, in the

isotropic and homogeneous case, ein is independent of the scale r as the forcing is
assumed to act on the largest scale L only. In the stationary case the lhs of Eq. (3.10)
vanishes, and together with Eqs. (3.8) and (3.9), Eq. (3.10) corresponds to ε = ein.
Eq. (3.10) contains only large scale quantities. Effects of fluctuations in the energy
input rate on the statistical properties of the turbulent flow as observed in [6] would
influence the scaling behavior of D(r, t) on intermediate scales r and therefore lead
to different values of the factor α, but the structure of Eq. (3.10) would remain the
same.

Using Eq. (3.2), we express the second order structure function D(L, t) in Eq.
(3.10) in terms of the Reynolds number Re(t):

L2

ν

d

dt
[Re2(t)−αRe2(t−τ)] = −2

3

(

6

b

)3/2

[Re2(t−τ)]3/2 − 6Re2(t − τ)

+
2

3

e0L
4

ν3
(1 + e sinωt). (3.11)

Here, we have inserted the time-dependent energy input rate, Eq. (3.1). In the case a
of constant energy input rate, i.e., e = 0, Eq. (3.11) simplifies to

0 = −2

3

(

6

b

)3/2

Re3
0 − 6Re2

0 +
2

3

L4

ν3
e0, (3.12)

relating the stationary Reynolds number Re0 to the stationary input rate,

L4

ν3
e0(Re0) = cε(Re0)Re3

0.

Introducing the reduced Reynolds number R(t) ≡ Re(t)/Re0 and the non-dimen-
sional time t/τ 0

L as t (analogously for τ and ω), Eq. (3.11) becomes

d[R2(t)−αR2(t−τ)]

dt
= −2

3

(

6

b

)3/2

[R2(t−τ)]3/2 − 6

Re0
R2(t − τ)

+

(

2

3

(

6

b

)3/2

+
6

Re0

)

(1 + e sin ωt). (3.13)



CHAPTER 3. RESPONSE MAXIMA IN MODULATED TURBULENCE 29

Here, τ 0
L = L

u0
1,rms

is the large eddy turnover time of the stationary flow. R(t) is of

order one. The delay time τ in units of the time scale τ 0
L is given by

τ =
a

R(t − τ)
. (3.14)

Eq. (3.13) describes the time evolution of R2(t), which is the square of the Reynolds
number of a flow exposed to a modulated energy input rate (Eq. (3.1)), normalized by
the square of the Reynolds number of a flow where only a constant, time-independent,
forcing is applied.

3.3 Response of turbulent flow to energy input rate modula-

tions

3.3.1 General trend

In the present study we shall restrict ourselves to the case of weak amplitude modu-
lation, i.e., e in Eq. (3.1) is small. Then we expect that also the oscillating response

∆(t) ≡ R2(t) − 1 (3.15)

has a small amplitude, and we can linearize Eq. (3.13). The time delay τ is approx-
imated by a time-independent constant which in our time units τ 0

L is simply a. This
approximation is justified as long as |∆| � 1. In Section 3.3.3 we shall discuss the
limits of this approximation. We first consider a = 1 which means that the cascade
time τ is taken as the large eddy turnover time τ 0

L. The resulting equation of motion
for the response ∆(t),

d

dt
[∆(t) − α∆(t − τ)] = −

(

(

6

b

)3/2

+
6

Re0

)

∆(t − τ)

+

(

2

3

(

6

b

)3/2

+
6

Re0

)

e sinωt, (3.16)

can be solved analytically. The solution to the linear equation (3.16) can be calculated
using the ansatz:

∆(t) = eA(ω) sin (ωt + φ). (3.17)

Here, A(ω) is the amplitude, and φ is the phase shift of the response which also
depends on ω. Inserting this expression into Eq. (3.16) gives the explicit solution of
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the linear response equation (3.16):

∆(t) =

2
3

(

6
b

)3/2
+ 6

Re0

ω
e (3.18)

×
− cosωt + α cos

(

ω(t + τ)
)

+
( 6

b )
3/2

+ 6
Re0

ω sin
(

ω(t + τ)
)

1 + α2 +
(( 6

b )
3/2

+ 6
Re0

ω

)2
− 2α cos ωτ − 2

( 6
b )

3/2
+ 6

Re0
ω sinωτ

.

In the following, we set the Kolmogorov constant b = 6 for simplicity, which is
near to the calculated value 6.3 [10] and to the experimental value in the range 6 − 9
[11–14]. To recover the expressions for a general b one has to replace in the following
results the terms (1+ 6

Re0
) and (2

3 + 6
Re0

) by ((6/b)3/2 + 6
Re0

) and (2
3 (6/b)3/2 + 6

Re0
),

respectively. The mean amplitude of the response is determined by the energy input
rate (2

3 + 6
Re0

)e, i.e., the last term on the rhs of Eq. (3.16). The time derivative
on the lhs of Eq. (3.16) leads to a mean decrease of the amplitude as 1/ω. Due
to the two terms in Eq. (3.16) containing the time delay τ = a, corresponding
terms in the second fraction of the solution (3.18) appear, ∝ α and ∝ (1 + 6

Re0
)/ω,

respectively, which, by the periodic dependence on ωτ induce a periodic variation of
the amplitude with the frequency ω. For low frequencies the terms ∝ (1+6/Re0)/ω,
originating from the first term on the rhs of Eq. (3.16), dominate, whereas for high
frequencies the terms ∝ α, due to the second term on the lhs of Eq. (3.16), become
more important. The latter, in particular, lead to a periodic variation of the response
amplitude up to very high frequencies.

The linear response ∆(t) ∝ e of the flow (with Re0 = 104) is plotted in Fig.3.1
for four different modulation frequencies. Also the modulation of the energy input
rate, ein(t)/e0 − 1 is plotted in Fig.3.1. The deviation of the Reynolds number from
its stationary value Re0, ∆(t) = (Re2(t) − Re2

0)/Re2
0, oscillates with the same

frequency as the driving, for all frequencies ω. The amplitude A of this oscillation
depends on the frequency. For the two small modulation frequencies, ω = 10−3 and
ω = 10−1, the amplitude of the response ∆(t) is nearly the same, about two thirds
of the amplitude e of the driving. For higher frequencies, the amplitude A of the re-
sponse decreases. In the case of ω = 10 we observe a phase shift between the forcing
and the resulting response. Fig.3.2 shows the amplitude A(ω) as a function of the
driving frequency for Re0 = 104. For low frequencies the amplitude remains con-
stant, and is two thirds, whereas for large frequencies the amplitude of the response
∆(t) decreases ∝ 1/ω. In addition to this decrease we note certain frequencies for
which the response amplitude becomes large or very small. The distance between two
maxima or two minima of the amplitude is nearly constant, see the inset of Fig.3.2.
This periodic behavior in the ω-dependence of the response amplitude is due to the
time delay τ . We shall explain this in the next section.
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Figure 3.1: Response ∆(t) (solid lines) for four different modulation frequencies ω, the

time dependent part of the energy input rate, ein(t)/e0 − 1 (dotted lines). The modulation

amplitude is 10% of the constant input rate, e = 0.1, and the Reynolds number of the sta-

tionary system is chosen as Re0 = 104. (a) ωτ0
L = 10−3, (b) ωτ0

L = 0.1, (c) ωτ0
L = 10, (d)

ωτ0
L = 100.

There are three time scales in the solution (3.18) of Eq. (3.16): The large eddy
turnover time, by definition 1, the time delay τ = a, which represents the cascade
time, and the time scale of the external modulation 1/ω. If the modulation time
scale is much larger than the large eddy turnover time, 1/ω � 1, i.e., if the driving
frequency is very small, then the solution (3.18) can be approximated by

∆(t) ' e
2

3
sin
(

ω(t + τ)
)

. (3.19)

We conclude A = 2/3, while the phase φ = ωτ is linear in ω for small frequencies.
If, on the other hand, the modulation frequency becomes very large, i.e, the time

scale of the driving is much smaller than 1, we see from Eq. (3.18) that the amplitude
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Figure 3.2: Amplitude A of the response ∆(t) as a function of the driving frequency ω (log-

log-scale) for weak modulations (e = 0.1) of the input rate ein, and Re0 = 104. The time

scale of the energy cascade is set to τ = a = 1. The dashed line denotes the low frequency

limit of the oscillation amplitude, 2/3, and the dotted line corresponds to the mean trend

of the high frequency limit, 3

3ωτ0

L

. Inset: linear-scale-plot of the response amplitude versus

frequency. The small arrows indicate the frequencies ωr (in units of τ0
L) of the response

extrema calculated from the extrema of the denominator in Eq. (3.18). The horizontal arrow

denotes the frequency distance ∆ω (in units of τ 0
L) between two frequencies for which the

amplitude is maximal (or minimal). It is ∆ω ' 2π/τ for high frequencies.

of ∆ decreases as ∝ 1/ω:

∆(t) ' e
(2
3 + 6

Re0
)

ω

[

− cos ωt + α cos
(

ω(t + τ)
)]

1 + α2 − 2α cos ωτ
. (3.20)

The mean trend ∝
( 2
3
+ 6

Re0
)

ω ' 2
3ω of this high frequency limit is also plotted in
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Figure 3.3: Same as Fig.3.2 but with a cascade time scale τ = a = 2.7 different from the

large eddy turnover time τ 0
L. Note the shift of the response maxima, the less pronounced

height and greater width of the first, and the more pronounced second response peak.

Fig.3.2. The crossover between the regimes of Eq. (3.19) and (3.20) takes place at
ωcross ' 1. This can be seen in Fig.3.2. The crossover frequency is not changed by
taking into account the cascade time τ = a 6= 1, as can be seen in Fig.3.3 which
shows the response amplitude as a function of frequency for a = 2.7.

We have considered here only the case, where the Kolmogorov constant b = 6.
For a general b, the crossover frequency is at ωcross ' (6/b)3/2, as can be seen from
the solution (3.18). This means, that the crossover from the regime of constant ampli-
tude to the regime of 1/ω-decay takes place at a smaller frequency if b is larger. The
positions of the response maxima, however, are only slightly shifted by a different b.

In conclusion, as long as the modulation frequency of the energy input rate is
smaller than 1, i.e., the large eddy turnover time is shorter than the period of the forc-
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ing, the system has time to follow the periodic modulations with an almost constant
amplitude. For higher frequencies instead, the oscillations become too fast for the
system to follow, and therefore, the response becomes weaker and weaker, and phase
shifted. Then the system experiences the fast modulation more and more as a con-
stant average energy input, and the oscillations of the response vanish as 1/ω. This
high frequency behavior has also been found for spin systems driven by an oscillating
magnetic field [20].

3.3.2 Response maxima

In Fig.3.2 we have seen that there are certain frequencies for which the amplitude of
the response becomes large or very small. Mathematically, these response extrema
originate from the minima and maxima of the denominator in Eq. (3.18),

N(ω) = ω
[

1 + α2 +

(

1 + 6
Re0

ω

)2

− 2α cos ωτ − 2
1 + 6

Re0

ω
sinωτ

]

. (3.21)

We calculate the extrema of N(ω) numerically. The first few of them are indicated
by the small arrows in Fig.3.2. The lowest frequency is near to ωr1 ' π/(3τ) ' 1.
There, the first and strongest maximum of the response can be observed, where the
amplitude becomes as high as A ' 4.2. Note, that this frequency is nearly equal to
the crossover frequency ωcross between the low and high frequency regimes of Eq.
(3.19) and (3.20) only in this particular case, where a = 1. If we assume an energy
cascade time τ = a = 2.7 the frequencies of the maxima are shifted towards smaller
frequencies. The height of the first maximum is decreased, i.e., A ' 1.2, whereas
the height of the following maxima is slightly increased, see Fig.3.3. For very large
frequencies, ω � 1, we can estimate the frequencies of the response extrema also
analytically. Then the two terms in the denominator ∝ (1+ 6

Re0
)/ω can be neglected,

and the extrema of N(ω) can be approximated by the extrema of cos ωτ ,

ωr(n) ' n
π

τ
, n = 0,±1,±2, ... . (3.22)

Now the amplitude of ∆ is at maximum for frequencies ωr(n) with even n, and at
minimum for ωr(n) with odd n. The distance between two maximum (or minimum)
amplitudes is 2π/τ as indicated by the horizontal arrow in the inset of Fig.3.2. For the
first maxima and minima at moderate frequencies this estimate is an approximation
only; also their distances are not yet constant as they are for high frequencies.

In the high frequency limit, the oscillation of the response at the frequencies ωr

of maximum or minimum amplitude is phase shifted by φr(m) = (2m + 1)π/2,
m = ±1,±3, ...:

∆(t) = e
(2
3 + 6

Re0
)

ωr

(−1 ± α) cos ωrt

(1 ∓ α)2
∝ sin (ωrt + φr). (3.23)
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Figure 3.4: (a) Phase shift φ(ω) as a function of the modulation frequency ω for weak modu-

lation strength e = 0.1, and Re0 = 104. The upper (lower) arrows indicate the frequencies of

maximum (minimum) amplitude of the response. For small ω the phase φ(ω) ∝ ωτ behaves

linearly.

The prefactor (−1 ± α) is always negative, i.e., at the response extrema we have
∆(t) ∝ − cos ωrt = sin(ωrt + φr). In Fig.3.4 the phase shift φ(ω), calculated
from the solution (3.18), is shown as a function of the driving frequency ω for all
frequencies. As the phase shift starts with φ(ω = 0) = 0 and changes continuously
with increasing frequency, we find that only m = 1 is possible for the phase shift φr

at the response extrema. The frequencies of the maximum and minimum amplitudes
of ∆ are indicated by arrows. The only exception is the first maximum, where the
approximation for ωr, Eq. (3.22) does not yet hold. There, the phase shift is near to
π/2, corresponding to m = 0. Another phase shift in this model is the one between
the response ∆(t) and the energy dissipation rate ε(t). According to Eq. (3.8) the
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dissipation rate is phase shifted by −ωτ with respect to the response ∆(t), i.e., this
shift is linearly growing with increasing frequency ω. At the response maxima and
minima the phase shift is −ωrτ ' −nπ.

The physics behind these response extrema can be explained as follows: The
time delay τ can be regarded as the (average) time which the input energy needs
before it is dissipated at small scales. In the case of maximum amplitude of the
response the time delay τ is a multiple jT of the period T = 2π/ω of the forcing,
whereas for the frequencies of minimum amplitude the delay τ has an additional
T/2. Therefore, at the extrema of the response, the energy dissipation rate and the
response are either in phase (maxima) or anti-phased (minima). In the latter case
the oscillation of the response is strongly reduced. If, on the other hand, the driving
frequency is such that the response and the dissipation rate are in phase, the transport
of energy through the system is very effective and leads to an enhanced oscillation.
At the response maxima as well as at the minima the phase shift between energy input
rate and response is φr = 3π/2.

3.3.3 Quality of the approximation for the delay τ

In the above calculations we made an approximation for the time scale τ of the cas-
cade process. In the linearized model, we assumed τ to be constant, τ = τ0 = a.
Now we check a posteriori the quality of this approximation. The solution (3.18) of
the linearized equation (3.16) is used to compute the “correct” delay time τ step by
step: The next approximation for τ is

τ1(t) =
a

√

1 + ∆(t)
, (3.24)

where the delay in Eq. (3.14) is still neglected. Further steps are:

τ2(t) =
a

√

1 + ∆(t − τ1)
, (3.25)

τ3(t) =
a

√

1 + ∆(t − τ2)
, etc.

In Fig.3.5 τ0 = a, τ1, τ2, and τ3 are plotted for different frequencies. For ω = 0.01, the
difference between τ1, τ2, and τ3 is not visible. The variation of the τi(t), (i = 1,2,3),
is largest at the frequency where the amplitude of ∆ is maximum, i.e., at ω ' 1

τ0
. For

all other frequencies, including at the response maxima, the variation of the τi(t) is
much smaller than τ0 and 1/ω. At these frequencies it seems reasonable to approx-
imate τ by the constant τ0 = a. In Eq. (3.16) the delay τ enters into two terms, in
∝ ∂t∆(t − τ) on the lhs, and in ∝ ∆(t − τ) on the rhs. We calculate the relative
error of these terms if τ = τ0 instead of τ = τi (i = 1, 2, 3) is employed, using the
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Figure 3.5: Successive approximations of the delay time τ : First, constant approximation

τ0 = a (solid lines); second, time dependent approximation τ1 (dotted lines); third approxi-

mation τ2 (dashed lines); fourth approximation τ3 (dashed dotted lines) for the delay time τ ,

see Eqs. (3.24,3.25). (a) ωτ 0
L = 0.01. (b) ωτ0

L = 1.06. (c) ωτ0
L = 10. (d) ωτ0

L = 102. In (a),

(c) and (d) the time dependent τi(t) for i = 1, 2, 3 are indistinguishable.

solution (3.18) for ∆:

δ1(τi)=

√

√

√

√

∫ 2π/ω
0 [cos (ω(t−τ0)+φ)−cos (ω(t−τi)+φ)]2dt

∫ 2π/ω
0 cos2 (ω(t−τ0)+φ) dt

, (3.26)

for the term on the lhs, and

δ2(τi)=

√

√

√

√

∫ 2π/ω
0 [sin (ω(t−τ0)+φ)−sin (ω(t−τi)+φ)]2dt

∫ 2π/ω
0 sin2 (ω(t−τ0)+φ) dt

, (3.27)

for the term on the rhs. The errors δ1 and δ2 are summarized in table 3.1 for the
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δ1(τ1) δ1(τ2) δ1(τ3)

ωτ0
L = 0.01 2.9 × 10−4 2.9 × 10−4 2.9 × 10−4

ωτ0
L = 1.06 0.15 0.22 0.23

ωτ0
L = 10 0.016 0.016 0.016

ωτ0
L = 100 0.046 0.046 0.046

δ2(τ1) δ2(τ2) δ2(τ3)

ωτ0
L = 0.01 1.7 × 10−4 1.7 × 10−4 1.7 × 10−4

ωτ0
L = 1.06 0.22 0.11 0.12

ωτ0
L = 10 0.013 0.013 0.013

ωτ0
L = 100 0.036 0.036 0.036

Table 3.1: Relative errors δ1, δ2 according to Eqs. (3.26) and (3.27) made in the two relevant

terms of Eq. (3.16) by using the constant time delay τ0 = a instead of the higher order

approximations τi(t) for τ .

four chosen frequencies of Fig.3.5. As expected, the errors are largest for the fre-
quency with maximum response amplitude, ω = 1.06, where it becomes up to 23%.
For ω = 10 and beyond it is between 1 and 5%. If one would allow for a time de-
pendence of τ in Eq. (3.16) the response maxima would probably become broader,
possibly less pronounced. However, within this mean field theory we anyhow can
make only approximate statements about the frequencies and the values of the ampli-
tudes at the response maxima. Namely, in the mean-field approach the effects of the
fluctuations on the structure function are neglected. Therefore we believe that even
with this approximation for the delay time τ we can qualitatively predict the basic
features of the system, which are the decrease of the amplitude of the response for
high modulation frequencies, and the existence of response maxima at certain fre-
quencies due to the finite time needed by the energy cascade process. The validity
of the approximation for τ will improve for smaller amplitudes e of the modulation.
However, for smaller e the total amplitude eA of the response will decrease as well
and finally the amplitude of the response maxima and minima will become so small
that, in experiments or numerical simulations, the fluctuations will be larger than the
maxima and minima.
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3.4 An alternative argument to introduce the time-delay

The energy balance equation (3.4) and the expression for the energy dissipation rate ε,
Eq. (3.7), hold for stationary systems. The time dependence of the quantities in these
equations in Section 3.2 has been introduced a posteriori by arguments based on the
picture of the energy cascade. It was not derived from the Navier-Stokes equation,
but is a modeling ansatz. Therefore, there are several arguments to introduce this
time dependence. We want to discuss here another way of arguments which leads to
a slightly different equation for the response. The idea is to start from an equation
which is already integrated over all scales, i.e., does not depend on the scale r any
more in contrast to Eq. (3.4) in Section 3.2. The total energy per unit mass of the
flow is E ' 3u2

1,rms/2. It is basically determined by the energy of the large scales.
The change with time of this energy equals the dissipation rate and the energy input
rate:

d

dt
E(t) = −ε(t) + ein(t). (3.28)

As the energy needs a time τ to travel down the eddy cascade before it is dissipated,
ε at time t may be expressed with Eq. (3.8) and E = 1

4D(L) by the total energy E at
time t − τ :

ε(t) = cε(E(t − τ))

(

2

3

)3/2 [E(t − τ)]3/2

L
.

Together with the approximation for cε, Eq. (3.9), we get:

d

dt
E(t) = − [4E(t − τ)]3/2

b3/2L
(3.29)

−6
ν

L2
E(t − τ) + ein(t).

As in Section 3.2 we express the energy E by the Reynolds number, E = 3ν2

2L2 Re2,
write the energy input in terms of the stationary Reynolds number Re0, Eq. (3.12),
and introduce the reduced Reynolds number, R(t) = Re(t)/Re0. Then, in time units
of τ0

L:

d

dt
R2(t) = −2

3

(

6

b

)3/2

[R2(t − τ)]3/2

− 6

Re0
R2(t − τ) (3.30)

+

(

2

3

(

6

b

)3/2

+
6

Re0

)

(1 + e sinωt).

The only difference between this equation and the previous one, derived in Section
3.2 (Eq. (3.13)), is that here the term ∝ dR2(t − τ)/dt is missing.
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Figure 3.6: Amplitude A of the response ∆(t) as a function of the driving frequency ω

(log-log-scale) for weak modulations (e = 0.1) of the energy input rate ein, and Re0 =

104 calculated from Eq. (3.30) in linear approximation. The dashed line denotes the low

frequency limit of the oscillation amplitude, 2/3, and the dotted line corresponds to the mean

trend of the high frequency limit, 2

3ωτ0

L

. Inset: linear-scale-plot of the response amplitude

versus frequency. The small arrows indicate the frequencies of maximum amplitude ωr (in

units of τ0
L) calculated from the minima of the denominator in Eq. (3.31). The horizontal

arrow denotes the frequency distance ∆ω (in units of τ 0
L) between two frequencies for which

the amplitude is maximal (or minimal). It is ∆ω ' 2π/τ for high frequencies.

If we solve Eq. (3.30) within the same linear approximation as employed in
Section 3.3 for Eq. (3.13), we find the same features for the response, see Fig. 3.6.
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The solution of the linearized equation obtained from Eq. (3.30) reads:

∆(t) = e
(2
3 + 6

Re0
)

ω

[

− cos ωt +
1+ 6

Re0
ω sin

(

ω(t + τ)
)]

1 + (
1+ 6

Re0
ω )2 − 2

1+ 6
Re0
ω sinωτ

. (3.31)

Here we have again set b = 6 for simplicity. The response maxima are also ob-
served, but they are less pronounced and slightly shifted. The amplitude at the first
(and strongest) maximum has only a value of AE ' 1.6. In the linear response so-
lution (3.18) of the previous model the terms originating from the second term on
the lhs of Eq. (3.16) were responsible for the strong variation of the amplitude at
high frequencies. These terms are missing in the present model. Therefore, we ob-
serve weaker amplitude maxima and minima at high frequencies in this model, cf.
Fig.3.6. If we take the extended cascade time τ = a > 1 into account, e.g. a = 2.7,
the response maxima are shifted towards smaller frequencies as discussed in Section
3.3.2. However, in this model, the heights of all maxima including the first one is
then slightly increased. At the response maxima the energy cascade time scale τ and
the period of the driving modulation are not multiples of each other as they are in
the previous model, i.e., the response and the energy dissipation rate are not exactly
in phase. If one would observe the response maxima in experiments or numerical
simulations, one could distinguish between the two models by studying the ratio be-
tween the frequencies of the response maxima and the cascade time scale τ . The
phase shift φ between the energy input rate and the response becomes negative and
oscillates around −π/2 for higher frequencies. At the response extrema it is near to
φr ' −π/2. Note that in the previous model the phase shift was always positive.

The two arguments to introduce the time delay are similar and are based on the
same physical idea of a finite time lapse of the cascade process. However, we tend
to prefer the first one, Section 3.2, because it introduces the time dependence at an
earlier stage. Eq. (3.4) still resolves the scales r and it is therefore closer to the
Navier-Stokes equation than Eq. (3.28).

3.5 Response of turbulent flow to a modulated driving force

In the previous sections we have studied the effect of a modulated energy input rate
on turbulent flow. However, the energy input rate may not be a quantity which can
be easily controlled in experiments. In some experiments it is more convenient to
modulate the driving force instead. Then the resulting energy input rate as well as the
total energy of the system can be considered as a response of the system. Therefore, in
this section, we show how to treat this slightly modified case within the variable-range
mean-field theory and what differences we expect in these two different response
functions.
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The derivation of Eq. (3.10) for the response of the system in terms of the
structure function D(L, t) remains the same as explained in Section 3.2. The energy

input rate ein(t) in that equation is given by ein(t) = 〈〈u(r)
i (x, t)f

(r)
i (x, t)〉〉. To

introduce a modulated forcing instead of a modulated energy input rate, we therefore
assume:

ein(t) ' D(L, t)1/2f(t) (3.32)

= D(L, t)1/2f0(1 + ef sinωt)

Here, f0 is the strength of the (stationary) forcing and ef the amplitude of the mod-
ulation. As has been discussed in Section 3.2, we express the response in terms of
the Reynolds number Re(t) and relate the stationary Reynolds number Re0 with the
stationary forcing strength f0, similar to Eq. (3.12). Then we introduce the reduced
Reynolds number R(t) = Re(t)

Re0
and the dimensionless time t̃ = t/τ0

L. The tilde is
dropped in the following. The analogous equation to (3.13) becomes:

d[R2(t)−αR2(t−τ)]

dt
= −2

3
[R2(t−τ)]3/2 − 6

Re0
R2(t − τ) (3.33)

+(R2(t))1/2
(

2

3
+

6

Re0

)

(1 + ef sinωt),

where b is set to b = 6. We again assume small modulation amplitudes, i.e., ef � 1,
and linearize Eq. (3.33) in ∆(t) ≡ R2(t) − 1. As before, the time delay τ is approx-
imated by the time-independent constant a. With the same ansatz Eq. (3.17) as in
Section 3.3.1 for modulated energy input rate, the linearized equation can be solved
analytically, and the solution reads:

∆(t) = ef

(2
3 + 6

Re0
)

ω

[

− cos ωt + α cos (ω(t + τ)) (3.34)

+
1 + 6

Re0

ω
sin (ω(t + τ)) −

(2
3 + 6

Re0
)

2ω
sinωt

]

×
[

1 + α2 +

(

1 + 6
Re0

ω

)2

+

(

(2
3 + 6

Re0
)

2ω

)2

− 2α cos ωτ

−2
1 + 6

Re0

ω
sinωτ +

(2
3 + 6

Re0
)

ω
(α sinωτ −

1 + 6
Re0

ω
cos ωτ)

]−1
.

This solution is very similar to the solution (3.18) for a modulated energy input rate,
but it contains some additional terms in both the numerator and the denominator.
These terms only slightly modify the frequency dependence of the response ∆(t).
In Fig.3.7 the amplitude A(ω) of the response ∆ is plotted as a function of driving
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energy input rate ein(t). Inset: linear-scale-plot of the response amplitude (solid line) and
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the frequencies ωr (in units of τ0
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the denominator in Eq. (3.34). The horizontal arrow denotes the frequency distance ∆ω (in
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L) between two frequencies for which the amplitude is maximal (or minimal). It is
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frequency for Re0 = 104. As for the modulated energy input rate we note that the
amplitude remains constant for low frequencies and decreases as ∝ 1/ω for high fre-
quencies. Also the response maxima and minima can be observed. Quantitatively,
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the low frequency limit for a modulated forcing is different from the modulated en-
ergy input rate case. For low driving frequencies, ω � 1/τ , we can approximate Eq.
(3.34) by:

∆(t) ' ef

2
3ω ( 1

ω sin (ω(t + τ)) − 1
3ω sinωt)

( 1
ω )2 + ( 1

3ω )2 − 2
3ω2 cos ωτ

. (3.35)

The terms 6/Re0 � 1 have been omitted here for simplicity. In the limit ωτ → 0,
with sinωτ → 0 and cos ωτ → 1, the amplitude A of the response (cf. Eq. (3.17))
becomes equal to one instead of two thirds (cf. Eq. (3.19)) for a modulated energy
input rate. The frequencies of the response maxima and minima are determined by
the extrema of the denominator of the solution (3.34). They are slightly shifted as
compared to the case with modulated energy input rate (Eq. (3.18)). The amplitude
at the first maximum is smaller than in the case with modulated energy input rate,
namely AE ' 2.7. However, in the limit of very high driving frequencies, ω � 1

τ ,
Eq. (3.34) can be approximated by Eq. (3.20), i.e., the response amplitudes of both
cases become identical.

It was pointed out in the beginning of this section that, if we modulate the driving
force, the energy input rate is not a controlled quantity, but can be considered as well
as a response of the system. This has been measured in a recent experimental study by
Cadot et al. [21]. Within the mean-field theory the energy input rate for a modulated
driving force can be calculated as:

ein(t)

ein,0
=
√

1 + ∆(t) (1 + ef sinωt), (3.36)

where ein,0 = D
1/2
L,0f0 is the stationary energy input rate for constant forcing without

modulation. In order to extract the amplitude of the energy input rate, we fit it by a
function of the form ein(t)

ein,0
= 1 + efAein sin(ω(t + φ)). This is justified as long as

the modulation amplitude ef is small, i.e., ef � 1, because then ∆(t) is of the same
order of magnitude as ef and Eq. (3.36) can be approximated by

ein(t)

ein,0
− 1 ' 1

2
∆(t) + ef sinωt + O(∆2). (3.37)

The amplitude Aein of the energy input rate is included in Fig.3.7 as a dashed-dotted
line. For low driving frequencies, ω � 1

τ , the amplitude Aein is nearly constant and
is 3/2, whereas for high frequencies it decreases and finally saturates at one. Also the
response maxima can be observed in the energy input rate: At the same frequencies,
where the response ∆ shows amplitude maxima, we observe a maximum directly
followed by a minimum in the amplitude of the energy input rate.

In conclusion, if the driving force instead of the energy input rate is modulated,
the general behavior of the response in terms of the second order structure function
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on the largest scale remains the same, including the response maxima and minima.
For low driving frequencies, the amplitude of the response becomes equal to the
amplitude of the forcing. In addition, the energy input rate can be regarded as a
different measure for the response of the system, which also shows the response
maxima at frequencies connected with the energy cascade time scale τ .

3.6 Conclusions

We calculated the response of isotropic and homogeneous turbulence to a weak mod-
ulation of the energy input rate ein within a mean-field theory. For low frequencies
the system follows the input rate modulation whereas for high frequencies the ampli-
tude of the response decreases ∝ 1/ω. Due to the intrinsic time scale of the system,
the eddy turnover time τ , which also characterizes the energy transport time down
the eddy cascade, there are certain frequencies, ωr ' nπ

τ , where the amplitude of
the response is either increased or decreased. At these frequencies the phase shift φ
between the energy input rate and the response is φr ' 3π/2. The response extrema
occur when the eddy turnover time is an even or odd multiple of half the modulation
period T/2 = π/ω, respectively. In the case of response maxima, the energy dissi-
pation rate and the response of the system are in phase. This can be understood as
a very effective transport of energy through the system. At the amplitude minima,
instead, the response of the system is strongly reduced. Then, the energy dissipation
rate and the response are exactly anti-phased.

In the mean-field approach the fluctuations of the energy flow rate through the
system and of the large eddy turnover time are neglected. In experiment or numerical
simulation the fluctuations are however present. They may lead to broader and less
pronounced response maxima, i.e., partly wash out the response maxima and minima.

With increasing modulation amplitude e of the energy input rate the response
maxima are expected to become more significant due to the better signal to fluctuation
ratio. But remember that for higher modulation amplitudes e, the time scale of the
eddy cascade, which enters into our model as a time delay, becomes time dependent.
This as well could lead to less pronounced response maxima as discussed in Section
3.3.3.

A way to check if the characteristic feature of the response maxima and min-
ima can still be well identified under the influence of fluctuations, would be to per-
form numerical simulations of the Navier-Stokes equation with a modulated driving.
However, as not only high Reynolds numbers are needed to achieve fully developed,
isotropic and homogeneous turbulence, but also the response as a function of time
for a wide range of frequencies has to be calculated, the computational effort would
be too high. Therefore, numerical simulations within two dynamical cascade models
of turbulence, the GOY shell model [22–28] and the reduced wave vector set approx-
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imation (REWA) [29–31], were performed [32], see Chapter 4. These models take
into account the fluctuations. The basic trend of the frequency dependence of the
response amplitude as calculated within the mean-field model can be reproduced in
both numerical models. We also clearly find the main maximum in both models al-
though it is of course washed out by the fluctuations. The higher maxima and minima
however seem to be completely washed out.

Also a recent experimental study of modulated turbulence by Cadot et al. [21]
showed evidence for the existence of the response maxima. This experiment may be
comparable with our study of a modulated driving force as discussed in Section 3.5.
The response maxima were measured in the amplitude of the energy input rate. In
addition, a constant response amplitude for low driving frequencies and a 1/ω-decay
of the velocity response amplitude for large frequencies has been observed. This is
in agreement with the 1/ω-decay of the energy response amplitude which we have
found in the mean-field model. The velocity response (u(t) − u0)/u0 = ∆u(t),
where u(t) is the measured velocity modulus and u0 the (stationary) mean velocity,
is connected to the energy response ∆(t) which we have calculated in this chapter
by 1 + ∆(t) = u(t)2/u2

0 = [1 + ∆u(t)]2 ' 1 + 2∆u(t) + O(∆2
u). As only small

modulation amplitudes are considered the term +O(∆2
u) will be negligible because

∆u � 1. Therefore, a 1/ω-decay of the amplitude of ∆u is in agreement with a
1/ω-decrease of the amplitude of ∆.

We hope that the present work will stimulate even more experimental and nu-
merical studies on the role of the energy cascade time scale in modulated turbulence.
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Chapter 4

Numerical simulations of modulated

turbulence ∗

Numerical simulations of fully developed turbulence driven by a modulated en-
ergy input rate or driving force are performed within two dynamical cascade
models, the GOY shell model and a reduced wave vector set approximation of
the Navier-Stokes equation (REWA). The frequency behavior of the system re-
sponse is studied and compared with predictions from a variable-range mean-
field theory, which excludes turbulent fluctuations. In agreement with the mean-
field approach we find a constant response amplitude for low driving frequencies
and a 1/ω-decay of the amplitude for high frequencies. In the mean-field theory,
the finite cascade time scale had lead to an oscillating behavior of the response
amplitude as a function of the driving frequency. In the simulations of both
models we observe the main maximum. The higher maxima and minima are
completely washed out by fluctuations.

4.1 Motivation

Many realistic turbulent flows are subject to modulated driving forces, as e.g. the
atmosphere of the earth driven by the periodic heating of the sun or the pulsed flow
through a pipeline. Three dimensional turbulence is characterized by an energy cas-
cade from the outer length scale, where the forcing acts, to the dissipative scale,
where most of energy is dissipated, see e.g. [1, 2]. The down-cascading of energy

∗See also A. von der Heydt, S. Grossmann, and D. Lohse Numerical simulations of modulated

turbulence, Preprint, submitted to Phys. Rev. E (2003)
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from large to small scales takes a characteristic time τ . In a statistically stationary
flow the energy dissipation rate equals the energy input rate. In a situation with time
dependent energy input, on the other hand, this statement will only hold on average,
whereas the energy dissipation at a certain time t is expected to depend on the energy
input at an earlier time due to the finite time delay of the energy transfer.

In a previous work [4] the effect of an energy input rate modulated in time,

ein(t) = ε0(1 + e sinωt), (4.1)

with a modulation amplitude e � 1 and a modulation frequency ω, has been studied
within a variable-range mean-field theory [5]. The response of the system can be
observed in the second order velocity structure function of the flow field at the outer
length scale L, DL(t) = 〈〈(u(x + L, t) − u(x, t))2〉〉 = 6u1,rms, which is equiva-
lent to the Reynolds number Re(t) = u1,rms(t)L/ν of the flow and the total energy
E(t) = 〈〈u2〉〉/2 of the system. Here, u1,rms is the rms of one velocity component
and ν is the viscosity. The response follows the oscillation of the energy input rate
with almost constant modulation amplitude at low frequencies ω of the energy input
rate, whereas the response amplitude strongly decreases (∝ 1/ω) at higher frequen-
cies. The finite energy transfer time τ plays a crucial role in this theory. This time
τ is the average time the energy stays within the system while it is transported by
the interaction cascade from the large eddies towards the small eddies, where it is
finally dissipated. This intrinsic time scale of the system is a multiple a of order 1
of the large eddy turnover time τL, corresponding to the sum over the eddy turnover
times on all scales. τ−1 determines the frequency at which the crossover takes place
between the regime of constant response amplitude and decreasing amplitude. In
addition, it leads to an oscillating behavior of the system response with driving fre-
quency ω, where the maxima and minima are at frequencies connected to the inverse
of the energy transfer time τ . In the limit of large frequencies ω, the extrema of the
response can be estimated to be at frequencies ωr ' nπ

τ , n = 1, 2, 3, ....
Recent experiments on modulated turbulence in a cylinder between two counter

rotating disks [6] revealed evidence for the proposed response maxima. In accordance
with the predictions from the mean-field theory [4], for small frequencies a constant
response amplitude was measured. For large driving frequencies a 1/ω-decay of the
velocity response amplitude was observed, again in agreement with the prediction
from our mean-field approach. Note here, that both the velocity response as well as
the energy response are the same up to a factor of two, in linear order, cf. Section 3.6.
In the experiments the amplitude of the driving force rather than that of the energy
input rate is modulated. Since the energy input rate is not a controlled quantity any
more it can serve to measure the response of the system. Of course, also within the
mean-field theory we can account for a modulated driving force, see [4]. The main
features, the 1/ω-decay of the energy response amplitude for high frequencies and
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Figure 4.1: Response amplitude A as a function of the driving frequency ω for a modulated

energy input rate ein = ε0(1 + e sinωt) calculated within the GOY shell model (full dots),

see Section 4.2.2. The modulation amplitude is set to e = 0.2, and the cascade time delay

turned out to be τ/τL = a = 2.54. The stationary Reynolds number is Re0 = 7.1 · 104,

the viscosity ν = 1.01875 · 10−4, and the large eddy turnover time τL = 15.57. Time and

length units are set by ν, k0 and F0 in GOY. Our findings are compared with the response

amplitude as calculated within the mean-field model with the same e and τ (dashed lines).

(a) Log-log plot of the amplitude A versus frequency. The long-dashed line denotes the low

frequency limit of the mean-field theory, A ' 2/3, and the dotted line the high frequency

limit, A ∝ 2/(3ω). The arrow denotes ωτL = 1/a ' 0.39. Near to this frequency the

crossover takes place in GOY. Inset: linear scale plot of the response amplitude. (b) Log-

log plot of the amplitude compensated by the asymptotic amplitude, i.e., A/(ωτL)−1 versus

frequency. A clear maximum is observed in GOY at a frequency near to the maximum of the

mean-field amplitude.
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Figure 4.2: Response amplitude A as a function of the driving frequency ω for a modulated

energy input rate ein = ε0(1 + e sinωt) calculated within the REWA model (full dots), see

Section 4.3.2. The modulation amplitude is set to e = 0.3, and the cascade time scale results

to be τ/τL = a = 2.94. The Kolmogorov constant is found to be b = 83.5 in this simulation

instead of bexp = 6 − 9. The stationary Reynolds number is Re0 = 1.2 · 105, the viscosity

ν = 5 · 10−5, and the large eddy turnover time τL = 0.063. Times are measured in units

of L
2/3

0 ε
−1/3

0 in REWA. The result is compared with the response amplitude as calculated

within the mean-field model with the same e, τ , and b (dashed lines). (a) Log-log plot of

the amplitude A versus frequency. The dotted line is ∝ 1/ω. The arrow indicates the mean-

field crossover frequency ωMF
crossτL = (6/b)3/2 = 0.019. Inset: linear scale plot of the

response amplitude. (b) Log-log plot of the compensated amplitude, i.e., A/(ωτL)−1 versus

frequency. A clear maximum is observed in REWA at a frequency near to the first maximum

of the mean-field amplitude. The arrow indicates the height of the maximum, i.e., a deviation

from the 1/ω-decay by a factor of 1.4 in REWA.
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Figure 4.3: Response amplitude A as a function of the driving frequency ω for a modulated

driving force F = F0(1 + e sinωt) calculated within the GOY shell model (full dots), see

Section 4.2.3. The modulation amplitude is set to ef = 0.2, and the cascade time scale is

found to be τ/τL = a = 2.48. The stationary Reynolds number is Re0 = 8.6 · 104, the

viscosity ν = 1.01875 · 10−4, and the large eddy turnover time τL = 14.5. The result is

compared with the response amplitude as calculated within the mean-field model with the

same e and τ (dashed lines). (a) Log-log plot of the amplitude A versus frequency. The long-

dashed line denotes the low frequency limit of the mean-field theory, A ' 1, and the dotted

line the high frequency limit, A ∝ 2/(3ωτL). The arrow denotes ωτL = 1/a ' 0.40. Near

to this frequency the crossover takes place in GOY. Inset: linear scale plot of the response

amplitude. (b) Log-log plot of the compensated amplitude, i.e., A/(ωτL)−1 versus frequency.

The dotted line denotes A/(ωτL)−1 ∝ const.
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Figure 4.4: Linear scale plot of the energy input amplitude Aein
as a function of the driving

frequency ω for a modulated driving force F = F0(1 + e sinωt) calculated within the GOY

shell model (full dots), see Section 4.2.3. For the parameters see Fig.4.3. The result is

compared with the response amplitude as calculated within the mean-field model with the

same e and τ (dashed line). The mean-field amplitude as well as the GOY amplitude start for

low ω with Aein
' 1.5 and merge at Aein

' 1 for high frequencies. The GOY amplitude

shows only the first main maximum.

the constant response amplitude for low frequencies, pertain. The response maxima
are only slightly shifted in comparison with the case of a modulated energy input
rate. In the case of a modulated driving force, as in the experiments, the energy input
rate as a response of the system, also shows maxima in addition to the mentioned
mean features. These are at the same frequencies as the maxima of the total energy
response amplitude.

In the mean-field approach, the (intermittent) fluctuations of the energy and,
in particular, of the cascade time τ are not present. In experiments and numerical
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simulations these fluctuations are of course present, and they may lead to broader and
less pronounced response maxima and minima. Therefore, in this chapter we shall
study the frequency dependence of the response to a modulated energy input rate into
a system where turbulent fluctuations are included. In particular, we shall address
the question whether the response maxima and minima can still be well identified in
the presence of fluctuations. Furthermore, we not only consider a modulated energy
input rate, but also discuss the slightly different case of a modulated driving force in
order to compare with the above mentioned experiments.

An appropriate way to numerically study the problem of modulated turbulence
would be a direct numerical simulation of the Navier-Stokes equation for this spe-
cific time-dependent energy input rate. However, as we need high Reynolds numbers
to achieve fully developed, isotropic, and homogeneous turbulence and, in addition,
need the response of the system as a function of time for a wide range of driving
frequencies, the computational demands would be too high. Therefore, we first study
the problem within a dynamical cascade model of turbulence, the Gledzer-Ohkitani-
Yamada (GOY) shell model [7–14]. With this model large Reynolds numbers and
enough statistics within a reasonable computing time for each driving frequency can
be achieved. The GOY model has been successfully used in a study about decaying
and kicked turbulence [15]. In addition, to be even closer to a numerical Navier-
Stokes simulation and to distinguish between real effects and artifacts of the turbu-
lence model, we follow another approach. We calculate the response of the system
to a modulated energy input rate within a reduced wave vector set approximation
(REWA), [16–18], where the Navier-Stokes equation is solved on a reduced, geo-
metrically scaling subset of wave vectors. This method is much closer to the Navier-
Stokes dynamics than the GOY-model, as it contains (i) much more modes than GOY,
(ii) it solves the Navier-Stokes equation for those modes and not only a model equa-
tion, and (iii) it is three dimensional.

Our main results are summarized in Figs. 4.1, 4.2, 4.3, and 4.4. In Figs.4.1 and
4.2, the amplitude A of the energy response is shown as a function of the driving
frequency for both the GOY model (Fig.4.1) and the REWA simulation (Fig.4.2)
with a modulated energy input rate. This is compared with the results of the mean-
field model with the corresponding parameters, i.e, the same modulation amplitude e
and time scale τ . In Figs.4.3 and 4.4 the results from the GOY model solutions are
shown for a modulated driving force and compared with the mean-field model. In all
cases we observe a constant amplitude for low driving frequencies and a 1/ω-decay
for high frequencies. This can in particular be observed in the compensated plots
(parts b of all three figures), where A, compensated by its asymptotic amplitude, i.e.,
A/(ωτL)−1, is plotted versus frequency. The 1/ω-decay of the response means, that
for fast modulation no response is detectable any more. The remaining dissipation
rate is that of the stationary system itself.
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In the mean-field approach, a sequence of response maxima is present for both
types of forcing, starting at a frequency ω ∝ 1/τ . In the simulations, this main max-
imum can also be observed, although it is weaker and broader, i.e., it is “washed out”
by fluctuations. The higher order maxima and minima are not visible in the simula-
tions, but are completely washed out by fluctuations. On the other hand, we empha-
size that the turbulent fluctuations in the GOY model are strongly overestimated due
to the extreme mode reduction in this model. In the REWA simulation, an artificially
large Kolmogorov constant b, indicating that still the fluctuations are stronger than in
the Navier-Stokes dynamics, is found. Using such large b in the mean-field approach
also leads to a considerable weakening of the first maximum and a shrinking of the
higher order maxima and minima towards very small amplitudes.

These results will be explained and discussed in detail in this chapter, which is
organized as follows. In the next section we study the modulated turbulence within
the GOY shell model. Before calculating the response of the system to a modulated
energy input rate as well as a modulated forcing in Section 4.2.2 and 4.2.3 we briefly
introduce the model and study its stationary properties in Section 4.2.1. In Section
4.3 we present our findings on modulated turbulence within the reduced wave vector
set approximation. We summarize our results in Section 4.4.

4.2 Modulated turbulence in the GOY shell model

4.2.1 Stationary properties

The GOY shell model consists of a set of coupled ODEs for one-dimensional com-
plex velocity modes un [7–14]. These modes un correspond to velocity differences
|u(x+rn)−u(x)| on scale rn. N modes are taken into account, n = 1, 2, ..., N , one
complex velocity mode per cascade level n, defined by the wave numbers kn = λnk0

which are equally spaced on a logarithmic scale, here, λ = 2. The model equations
read:

(

d

dt
+ νk2

n

)

un = i(aknu∗
n+1u

∗
n+2 + bkn−1u

∗
n−1u

∗
n+1

+ckn−2u
∗
n−1u

∗
n−2) + Fδn,1, (4.2)

where n = 1, ..., N , a = 1, b = −1/4, and c = −1/2. These are the traditional
parameters. We impose boundary conditions on the un, i.e., un = 0 for n < 1 or
n > N . We use N = 14 shells, a viscosity of ν = 1.01875 · 10−4, and k0 = 2−4.
The forcing acts on the largest scale, i.e., the first shell, n = 1. F is constant,
F = F0 = (1 + i) · 10−2. Together with ν and k0 this sets the time and length
units as well as the Reynolds number. Eqs. (4.2) are integrated using a fourth order
Runge-Kutta scheme with adaptive step size [19].
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With the above chosen parameters the GOY dynamics is chaotic [14]. The sys-
tem is forced on large scales while most of the energy is dissipated on small scales.
It reaches a steady state, in which the velocities are stochastically fluctuating. In
this sense the system has similar properties as three dimensional Navier-Stokes tur-
bulence. The scaling behavior of structure functions and dissipation has been exten-
sively studied in [11–14, 20–22]. The deviations from K41 scaling due to intermit-
tency observed in the GOY model are very similar to experimental values. Most of
the previous studies have been done with 22 or more shells. As we use here only 14
shells in order to reduce the computational effort we explicitly check some scaling
properties of, e.g. the structure functions and the energy spectrum in a simulation
with constant, stationary forcing F = F0 in Eq. (4.2). N = 14 then turns out to be
sufficient.

The Reynolds number of the system can be defined as follows. An outer length
scale L is given by the smallest wave number k1, L = 1/k1. A typical velocity U is

the velocity on that scale, 〈〈|u1|2〉〉1/2
t . The average 〈〈...〉〉t is taken over time. With

these length and velocity scales the Reynolds number of the present simulation is
Re0 = UL

ν = 8.6 · 104. The simulated time interval is several hundreds of large eddy
turnover times |k1u1|−1.

For the second order structure function we use the following method. In [11] it
has been suggested to study the scaling of

Σn,q = 〈〈|=(unun+1un+2 +

(

1 − ε

λ

)

un−1unun+1)|q/3〉〉, (4.3)

instead of the pure moments of the velocity sn,q = 〈〈|un|q〉〉 in order to eliminate the
period 2 and period 3 oscillations which are an artifact of the GOY model. The second
order quantity Σn,2, corresponding to the second order structure function, is shown in
Fig.4.5 as a function of wave number index n = log2(kn/k0). One clearly observes
an inertial subrange (ISR) between shell 2 and 9, where the second order structure
function shows scaling with an exponent near to the K41 value 2/3, i.e., Σn,2 ∝
k−0.71

n corresponding to ∝ r0.71 for the structure function. The scaling exponent is
not equal to the K41 value, because the model shows intermittency corrections. The
higher wave numbers, i.e., smaller scales, n = 12−14 belong to the viscous subrange
(VSR), where dissipation takes place. In this range the viscosity term is dominant
and the velocity decays rapidly with kn, in fact more than exponentially [21, 22].
The external forcing of the flow acts on shell n = 1, therefore the stirring subrange
(SSR) contains the first shell only. The spectrum, which is obtained by fast Fourier
transforming (FFT) a time series of the velocity u(t) =

∑

n〈〈Re(un(t))〉〉 and raising
it to the power two, can be compared to the energy spectrum under the assumption of
the Taylor hypothesis. This spectrum is shown in Fig.4.6 for N = 14. We observe
about one frequency decade of (nearly) Kolmogorov scaling, where the energy decays
as ∝ f−5/3 with frequency f . For N = 14 the Kolmogorov scaling range is not yet
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Figure 4.5: Second moment Σn,2 = 〈〈|=(unun+1un+2 +
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dots) corresponding to the second order velocity structure function as a function of wave

number kn = 2nk0, averaged over a long time interval (t=1400τL) and with a stationary,

constant forcing, F = F0. Between shell 2 and 9 ISR-scaling behavior, Σn,2 ∝ k−0.71
n (solid

line) is observed, whereas the shells 12-14 form the VSR. Σ14,2 is zero by definition. The

dotted line indicates the middle of the crossover region between the ISR and the VSR.

well developed. For less shells this region becomes even narrower and the spectrum
shows strong peaks at some intrinsic frequencies. When reducing the number of
shells even more, the velocities relax to a stationary value without any fluctuations,
i.e., the chaotic behavior of the system is lost.

In conclusion, the GOY model with N = 14 shells exhibits an inertial subrange
scaling, although the ISR for the frequency spectrum is only narrow, but the spec-
trum in k-space has a scaling range of about three orders of magnitude. This seems
acceptable for our goal to study the response of the system to a modulated driving,
because we are only interested in global quantities like the total energy E(t) but do
not need information on scale resolved quantities.
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Figure 4.6: Energy frequency spectrum of the GOY-system with a stationary, constant forc-

ing F = F0. The spectrum is obtained by fast Fourier transforming (FFT) an actual time

series of the velocity u(t) =
∑

n〈〈Re(un(t))〉〉. About one frequency decade of Kolmogorov

scaling ∝ f−5/3 is observed. In k-space the scaling regime of the spectrum is more extended,

i.e., about three decades, as has been already shown in Fig.4.5.

Time scales of the GOY model

The time scales in the model have been determined as follows. For each shell n an
eddy turnover time τn is defined by [11]:

τn =
1

|unkn|
. (4.4)

This is also considered as the time scale for the turbulent energy transfer through the
nth level. The time scale relevant for the energy loss on level n due to viscosity is
defined as

τd
n =

1

νk2
n

. (4.5)
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n are obtained by averaging over 1400 large eddy turnover times. The dotted

line indicates the middle of the crossover region between the ISR and the VSR.

Both time scales are shown in Fig.4.7.

In the ISR between shell 2 and 9, where the energy transfer times are the relevant
time scales for the dynamics, the decrease of the τn with n is near to τn ∝ 2−2n/3

(dashed line in Fig.4.7) as expected for the turnover times of eddies of sizes rn/L ∝
(1/2)n. In this range the dissipation time scales τ d

n are much larger than the τn,
meaning that the turbulent energy transfer is much faster than the viscous dissipation,
and therefore the dominant process. In the VSR instead τ d

n < τn, i.e., on average the
energy is dissipated by viscosity before it can be transferred to smaller scales.

The largest eddy’s turnover time is in general defined by the velocity on the
outer length scale L, i.e., on the length scale of the forcing, which in this case is 1/k1.
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However, in this model, the time τ1 is disturbed due to finite size effects. Therefore,
we extrapolate from the turnover times of the other shells. A linear fit in Fig.4.7 for
log2 τn with n = 2, ..., 11 leads to τ fit

n = 22.46 · 2−0.63n. Without intermittency
one would have τn ∝ 2−2n/3; the small deviation corresponds to the intermittent
scaling of un ∝ k0.37

n or an intermittency correction of δξ = ξ1 − 1/3 = 0.04. The
extrapolation for n = 1 yields for the large eddy turnover time τL = τ fit

1 = 14.5.
The time scale corresponding to the energy transfer time τ used in the mean-field
model [4] is the sum over the eddy turnover times of all energy-input and inertial-
range shells, i.e., here τ ' ∑11

n=1 τn ' 35.9. The factor τ/τL = a between the
transfer time and the large eddy turnover time is then a = 2.48.

Constant energy input rate

Until now, we have considered a constant forcing F = F0. The resulting energy input
rate ein(t) = 〈〈u∗

1(t)F0〉〉 then fluctuates around its mean value because of the u∗
1(t)-

fluctuations. In the mean-field theory [5] the energy input rate ein is constant instead.
For closer comparison we also consider another type of forcing in the GOY-model:
F (t) = ε0u1(t)/|u1(t)|2. This forcing F (t) fluctuates as u1(t). Then the energy
input rate is ein = 〈〈u∗

1F 〉〉 = ε0 = const by definition. The ISR-scaling behavior
as well as the energy spectrum then turn out to be similar to the previously discussed
ones with the constant forcing F = F0. The energy transfer time τ is slightly larger
in this case, namely τ = 39.5, and the large eddy turnover time is τL = τ fit

1 = 15.57.
Again, the large eddy turnover time is extrapolated from τ2, ..., τ11. This leads to the
factor τ/τL = a = 2.54 between the total time delay of the energy cascade and the
large eddy turnover time. In the following sections we will study the time-dependent
cases where either the energy input rate ein, i.e., F = ε0

u1
|u1|2

(Section 4.2.2) or the
forcing F = F0 is modulated (Section 4.2.3).

4.2.2 Modulated energy input rate

In this section we apply a modulated energy input rate to the GOY model, i.e., we set
the forcing F = F (t) in equation (4.2) as

F (t) = ε0
u1

|u1|2
(1 + e sinωt) (4.6)

with a modulation amplitude e = 0.2. Then, the resulting energy input rate ein is

ein(t) = 〈〈u∗
1(t)F (t)〉〉, (4.7)

= ε0(1 + e sin ωt),
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and has a prescribed modulation amplitude eε0 by definition. The total energy of the
system

E(t) =
1

2

14
∑

n=1

〈〈u∗
n(t)un(t)〉〉, (4.8)

is calculated for a wide range of driving frequencies ω in order to study the frequency
behavior of the response. The brackets 〈〈...〉〉 denote the ensemble average. This en-
semble average is performed as follows. From a long stationary simulation we collect
an ensemble of 1500 starting configurations which we then let evolve according to
Eqs.(4.2) but now including the modulation of the forcing F (t), Eq.(4.6), and av-
erage over these 1500 time series. To ensure that the different realizations can be
considered as statistically independent, the time delay between the successive start-
ing configurations for the different realizations is chosen to be about 100 large eddy
turnover times. The adaptive step size routine controlling the Runge-Kutta integra-
tion algorithm for ODEs does not produce the same time steps for all time series. To
overcome this, we have calculated also the same number of equidistant time steps by
spline interpolation for all time series.

The oscillating response of the system ∆(t) is then studied in terms of the ratio
between the energy E(t) with modulated energy input and the energy E0(t) without
modulation, namely

Enorm(t) =
E(t)

E0(t)
= 1 + ∆(t). (4.9)

E and E0 both are averaged over 1500 realizations. In spite of the averaging not only
E but also E0 still contains (weak) fluctuations. Therefore, we write E0(t), as E0 is
still slightly fluctuating around its mean value. Accordingly, the energy input rate ein

is normalized by its stationary value, enorm
in (t) = ein(t)

ε0
= 1 + e sinωt.

In Fig.4.8 the input rate enorm
in (t) and the energy Enorm(t) are plotted for four

different driving frequencies. For the two low frequencies where ωτL � τL/τ =
1/a '0.39, the energy follows the oscillation of the energy input rate with almost
constant, but smaller amplitude. For higher frequencies the amplitude of the devia-
tionsof the normalized energy from its stationary value 1 strongly decreases, and a
phase shift with respect to the energy input becomes visible. The same behavior of
the energy has been observed in the mean-field theory [4].

To quantitatively access the frequency behavior of the response amplitude, we
calculated time series of the total energy E(t) for 85 different driving frequencies
varying over almost 3 decades between 0.012 ≤ ωτL ≤ 9.3. The chosen frequencies
are approximately equally spaced on a logarithmic scale. The normalized energy
Enorm(t) is fitted by a function of the form

Enorm(t) = Econst + eA sin (ωt + Φ), (4.10)
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Figure 4.8: Energy input rate enorm
in = ein/ε0 (dotted lines) and energy content Enorm (solid

lines) for four different modulation frequencies ω calculated in the GOY model. The energy

input rate ein is modulated with a modulation amplitude of 20% of the constant energy input

rate ε0, e = 0.2, according to Eq.(4.7). Also included is the fit according to Eq.(4.10) for the

energy Enorm (dashed lines, indistinguishable from the solid lines). (a) ωτL = 0.0151, (b)

ωτL = 0.151, (c) ωτL = 0.787, (d) ωτL = 2.025.

with three free parameters: Econst, the amplitude A, and the phase shift Φ. Econst

is near to 1 for all frequencies, i.e., Econst = 1.0022 ± 0.0032. The fits (4.10) are
included in Fig.4.8 as dashed lines but they are mostly indistinguishable from the
solid lines for the energy itself.

Fig.4.1 of Section 4.1 shows the amplitude A, resulting from the fitting proce-
dure, as a function of the dimensionless frequency ωτL. A is almost constant for low
frequencies and has a value of about 2

3 . For higher frequencies the amplitude de-
creases as ∝ 1/ω. The same features have been observed in the mean-field calcula-
tions, see dashed lines. The long-dashed line in Fig.4.1 represents the low frequency
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limit of the mean-field theory, A ' 2/3, and the dotted line the high frequency limit,
A ∝ 2/(3ωτL).

The crossover between the regime of constant amplitude and the one of 1/ω-
decay of the energy response takes place at ωcrossτL ' 1/a '0.39, which is indicated
by the arrow in Fig.4.1. In the mean-field approach this crossover is always at ωτL =
1, independent of the factor a between the large eddy turnover time and the total time
scale of the energy transfer. In experiments [6] the crossover frequency has been used
to measure the energy cascade time scale. The present simulations confirm that this
frequency gives the correct order of magnitude for the energy transfer time.

Response maxima, as observed in the mean-field model at frequencies con-
nected with the inverse energy transfer time, are difficult to be identified in Fig.4.1a.
There is some structure visible at ωτL ' 0.31 and ωτL ' 1.57. In Fig.4.1b, where
the amplitude A compensated by the asymptotic amplitude (ωτL)−1, i.e., A/(ωτL)−1

is plotted versus frequency, this structure becomes more evident, and we see a clear
maximum at a frequency of about ωτL ' 1.57. This maximum probably corre-
sponds to the mean-field maximum. Of course, the maximum in GOY is broadened
and weakened due to the large fluctuations, and the higher order maxima and minima
are apparently washed out completely. As in the mean-field theory no fluctuations
are included, the energy cascade time τ is considered to be constant. However, in
the GOY model this assumption is not true, as can clearly be seen in Fig.4.9. Here,
a time series of the cascade time τ(t) =

∑11
n=1 τn(t) is plotted, computed within

the GOY-shell model with non-modulated forcing F = ε0
u1

|u1|2
. The inset shows the

probability distribution of τ/τL. This distribution has its maximum at τ/τL = 2.39,
almost at the mean cascade time a = 2.54, and a width (FWHM/2) of about 0.46a.
The width is almost half the size of the mean which indicates that the transfer time
fluctuates strongly and therefore we have to expect that the response maxima are
more or less washed out. However, these strong fluctuations are considered as an
artifact of the GOY-model and not as a feature of real turbulence. The GOY-model
contains only one velocity mode per cascade level instead of infinitely many modes
in real turbulence. This one-mode approximation leads to an overestimation of the
fluctuation strength. In order to confirm this, we performed another simulation with
more modes per level within the reduced wave vector set approximation (REWA) of
the Navier-Stokes equation. This will be presented in Section 4.3.

4.2.3 Modulated driving force

In this section we present further results within the GOY model based on a non-
fluctuating driving force F0 which is regularly modulated as was ε0 in the previous
section. This case may be more comparable to the experimental method in reference
[6], because there the driving force is modulated. What cannot be modeled with GOY
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Figure 4.9: Time series of the cascade time τ(t) for non-modulated forcing F = ε0u1/|u1|2
in the GOY model. Strong fluctuations are observed. Inset: Probability distribution of τ/τL.

The mean is a = 2.54, and the width FWHM/2=0.46a giving about 50% fluctuations.

is the spatial inhomogeneity in the experiments [6].
In equations (4.2) we now apply a forcing

F = F (t) = F0(1 + ef sinωt), (4.11)

with a modulation amplitude of ef = 0.2. As in Section 4.2.2 we calculate the en-
semble averaged time series of the energy input rate ein(t), see first line of equation
(4.7), and the total energy of the system E(t) cf. equation (4.8) for 89 different fre-
quencies between 0.0144 ≤ ωτL ≤ 3.04, again logarithmically equally distributed.
The normalized energy Enorm(t) and energy input rate enorm

in (t) are then fitted by a
function according to equation (4.10), with the parameters Econst, A, Φ, and ein,const,
Aein , Φein , respectively.

The amplitudes A and Aein are plotted in Figs.4.3 and 4.4 of Section 4.1, re-
spectively, as a function of the dimensionless frequency ωτL. Also in this case of
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a modulated force, the response amplitude is almost constant for small frequencies,
namely A ' 1, and decreases as 1/ω for high frequencies, see Fig.4.3a (full dots).
Again, the long-dashed line represents the low frequency limit of the mean-field the-
ory for A (which is A ' 1 in this case) as well as the dotted line the high frequency
limit. As in the previous section, the crossover frequency between the two regimes
is determined by the energy transfer time, i.e., ωcrossτL ' 1/a ' 0.40 (as a = 2.48
in this case), which is marked by the small arrow in Fig.4.3a. The amplitude of the
energy input rate Aein starts with a value of about 1.5 for low frequencies and merges
towards 1 for high frequencies, see Fig.4.4. This indicates that at very large frequen-
cies the velocity is not oscillating any more as it only feels a mean constant force. The
oscillations of the energy input rate are then only a consequence of the oscillation of
the driving force F . In the mean-field theory we have observed the same trend for
both amplitudes. The corresponding mean-field results are inlcuded as dashed lines.

Both amplitudes A and Aein show a maximum at a frequency near to the cross-
over frequency ωτL ' τL/τ = a−1 = 0.40. In the compensated plot Fig.4.3b, where
A/(ωτL)−1 is plotted as a function of frequency, a clear deviation from the dotted
line representing A ∝ 1/ω can be observed. At this frequency, the mean-field theory
predicts a first maximum for the energy response amplitude (Fig.4.3a) and a max-
imum directly followed by a minimum for the energy input rate, see Fig.4.4. This
frequency is connected to the energy transfer time τ . In the mean-field model further
maxima of the energy response and wiggles of the energy input rate are observed at
multiples of this frequency. However, in the GOY model all further maxima and min-
ima are washed out presumably because of the strong fluctuations. The fluctuations
of the energy cascade time scale are found to be similar as in the case of a fluctuating
force shown in Fig.4.9 in the previous section.

4.3 Modulated turbulence in the reduced wave vector set ap-

proximation

As was pointed out in the introduction of this chapter a full numerical simulation of
the Navier-Stokes equation for modulated turbulence at high Reynolds numbers is
still not possible or requires low Reynolds numbers. Therefore, we first have consid-
ered the GOY shell model. This model correctly describes many features of turbu-
lence, however, due to the one-mode approximation in each cascade level, it contains
various artifacts. Namely, it strongly overestimates the strength of the fluctuations.
The aim of this section is to study the problem of modulated turbulence within an-
other model, the reduced wave vector set approximation (REWA) [16–18], which is
much closer to the Navier-Stokes equation than the GOY model and contains much
more modes per cascade level. Of course, as compared to full numerical simulations
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of the Navier-Stokes equation, it still contains a mode reduction in order to make the
computational effort reasonable for the desired high Reynolds numbers. The present
approximation has been introduced and extensively studied in [16–18] . Here, we use
it together with a time-dependent driving. For completeness we briefly explain the
approximation before we present the results with modulated driving.

4.3.1 The reduced wave vector set approximation

The velocity field u(x, t) is Fourier transformed into plane waves,

u(x, t) =
∑

p
u(p, t)eip·x. (4.12)

Periodic boundary conditions are applied on a periodicity volume (2πL0)
3. The wave

vectors p are given by p = (pi) = (niL
−1
0 ), with ni = 0,±1,±2, .... In order to

efficiently deal with the large number of modes involved, the reduced wave vector set
approximation selects a limited number of modes by admitting only a geometrically
scaling subset K =

⋃

l Kl of wave vectors, i.e., u(x, t) =
∑

p∈K u(p, t)eip·x. On

this subset K = {p(l)
n , n = 1, ..., N, l = 0, ..., lmax} the Navier-Stokes equation for

incompressible flow,

d

dt
ui(p

(l)
n ) = −iMijk(p

(l)
n )

∑

q1,q2∈K,q1+q2=p(l)
n

uj(q1)uk(q2)

−ν(p(l)
n )2ui(p

(l)
n ) + fi(p

(l)
n ), (4.13)

together with the continuity equation,

p(l)
n · u(p(l)

n ) = 0, (4.14)

is solved. Mijk is the coupling matrix, Mijk(p) = 1
2 (pjP

⊥
ik (p) + pkP

⊥
ij (p)), where

P⊥
ij (p) is the orthogonal projector to p. The subset K consists of a basic sub-

set K0 = {p(0)
n , n = 1, ..., N} together with its scaled replicas p

(l)
n = 2lp

(0)
n , l =

1, ..., lmax . In the present simulation we take N = 74 wave vectors p
(0)
n ,

K0 = {±(2, 2, 2),±(−1, 2, 2),±(−2, 1, 1),±(3, 0, 0),

±(4, 1, 1),±(4,−2, 1),±(−3, 3, 3),±(−5, 1, 1),

±(4, 4, 1),±(3, 3, 0),±(1, 1, 10),±(−10, 5, 5)

+permutations} (4.15)

These wave vectors
⋃

l Kl are chosen such that they span a wide range of length
scales, but still dynamically interact to a good degree. For the Navier-Stokes equa-
tion this means that as many Navier-Stokes interactions p = q1 + q2 as possible
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between the wave vectors in K are allowed for. The largest eddies of the order L0

are represented by the wave vectors in K0, whereas the subsets Kl contain wave vec-
tors of smaller and smaller eddies. The choice of the smallest eddies, i.e., the value
of lmax, depends on the kinematic viscosity ν. lmax and ν are adjusted such that
the velocity amplitudes u(p

(lmax)
n , t) of the smallest eddies are almost zero. In this

simulation, ν is chosen as ν = 5 · 10−5 and the number of levels as lmax + 1 = 9.
To maintain the turbulent flow we apply a forcing as in [16–18]:

f(p, t) =







ε0
u(p,t)

∑

q∈Kin
|u(q,t)|2

(1 + e sinωt), for p ∈ Kin

0, for p 6∈ Kin.
(4.16)

The subset Kin of K0 by choice contains the wave vectors with the three smallest
lengths. Kin contains 14 vectors, namely

Kin = {±(2, 2, 2),±(−1, 2, 2),±(−2, 1, 1), +permutations}. (4.17)

In reference [17] it has been shown that the statistics of the solution the equation of
motion do not depend on the particular choice of K0. This forcing corresponds to the
same type of forcing, which has already been applied to the GOY model in Section
4.2.2. It enforces the energy input rate to be modulated:

ein = 〈〈
∑

p(l)
n ∈K

u∗(p(l)
n ) · f(p(l)

n )〉〉 = ε0(1 + e sinωt). (4.18)

Eqs.(4.13) are a set of 3N(lmax + 1) coupled ODEs for the complex mode

amplitudes ui(p
(l)
n ) which is numerically solved within the Burlisch-Stoer integration

scheme with adaptive step size [19]. Length scales are measured in units of L0 and
time scales in units of L

2/3
0 ε

−1/3
0 . A Reynolds number can be defined as follows:

The wave length λ of the smallest wave vector gives an external length scale L =
2π/

√
6, and a typical velocity on that scale is determined by the rms of one velocity

component, u1,rms. Then, in our case, the Reynolds number is Re =
u1,rmsL

ν =
1.234 · 105 because from the simulations we obtain u1,rms = 2.405.

The main features of fully developed turbulence as irregular velocity signals,
characteristic scaling of structure functions, etc. are well described within this ap-
proximation, as has been shown in [16, 17, 23]. The REWA solutions show small
scale intermittency, which is produced by the competition between down-scale en-
ergy transport and viscous dissipation on the small scales [17, 23]. Other mecha-
nisms leading to intermittency in turbulence as e.g. nonlocal interactions between
wave vectors are underestimated in this approximation [24]. The down-scale energy
transport in the REWA fluid is less effective than in real turbulence, because in this
approximation the larger wave vectors are more and more thinned out [25]. This is
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in contrast to the case of the complete set of wave vectors (e.g. in full grid simula-
tions) where the density of states increases ∝ p2, whereas in the reduced wave vector
set K the number of admitted wave vectors decreases as 1/p [18]. In reference [25]
it has been shown that this reduced energy transport leads to an overestimation of
the Taylor Reynolds number of the system as well as the Kolmogorov constant b,
defined by D(r) = b(εr)2/3, by roughly one order of magnitude for our choice of
N . In the present simulation we obtain b = 83.5 instead of b = 6 − 9 as in experi-
ments [26–28]. Since D(L) is the energy density ∝ 〈〈u2〉〉 of the fluctuations in the
fluid system, the large b value indicates that even in the REWA approximation the
strength of the fluctuations is highly overestimated. The large Kolmogorov constant
will change the relevant time scales in the system, as will be shown in Section 4.3.2.

The characteristic time scale for the turbulent energy transfer on scale l can be
estimated as [17]:

τ(l) =
1

p(l)u
(l)
rms

, (4.19)

where p(l) denotes the mean wave number on scale l, i.e., it is the mean inverse
eddy size in Kl. As in the GOY model, Eq.(4.5), the time scale of viscous dis-
sipation is τd = 1/ν(p(l))2. Again, in the ISR τ(l) > τd, whereas in the VSR
τd > τ(l). From a simulation with stationary forcing, i.e., e = 0 in Eq. (4.16),
the time delay of the energy down-transport τsum is then estimated by the sum of
all τ(l) in the ISR, τsum =

∑

l∈ISR τ(l) '0.186. The largest of these τ(l), on the
largest scale, τ(0) = 0.0632 can be regarded as a large eddy turnover time τL. Thus,
τsum = 2.94τL and the factor between the cascade time scale and the large eddy
turnover time is τsum/τL = a = 2.94.

As we have seen in the GOY model, Fig.4.9, the energy transfer time is strongly
fluctuating. We attributed these strong fluctuations to the one-mode per level approx-
imation of the GOY model. Fig.4.10 shows a time series of the energy transfer time
τsum(t) (use Eq.(4.19) with u(l)(t)) in the present reduced wave vector set approx-
imation (REWA), and, in the inset, the distribution of this time scale. Clearly, the
fluctuations are much weaker than in the GOY model though presumably still larger
than in full simulations; and they are zero in the mean-field approximation. The dis-
tribution is centered around τsum/τL = a with a width (FWHM/2) of about 0.02a.
In a test calculation within the REWA model, where only 38 modes per level (instead
of 74 in the present simulation) were used, we observed a even larger b=153 together
with stronger fluctuations in the energy transfer time, which had about 5.5% fluctua-
tions. This indicates that the size of fluctuations is growing with decreasing number
of wave vectors per cascade level.
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Figure 4.10: Time series of the cascade time τsum(t) in REWA. Inset: Probability distribu-

tion of τsum/τL. The fluctuations are considerably smaller than in the GOY model. Note the

different scales in this figure and Fig.4.9. The mean is τsum/τL = a = 2.94, and the width

FWHM/2=0.02a giving about 2% fluctuations.

4.3.2 Modulated energy input rate

The response of the system to a modulated driving force, cf. Eq.(4.16), is calculated
now in terms of the total energy of the system

E(t) =
1

2
〈〈

l=lmax
∑

l=0

∑

p∈Kl

|u(p, t)|2〉〉. (4.20)

The modulation amplitude of the energy input rate ein (Eq.(4.18)) is chosen as e =
0.3. The average is performed as follows. We average over 25 to 30 realizations,



CHAPTER 4. MODULATED TURBULENCE IN NUMERICAL MODELS 71

which are obtained from Eqs.(4.13) with different starting values. The delay between
the different starting values is one driving period. For the higher frequencies the
period 2π/ω becomes too small to ensure statistical independence of the different
realizations. Then, we chose the delay between the successive starting values for
the different realizations to be several driving periods such that it is at least 60τsum.
The response is calculated for 150 (approximately equally spaced on a logarithmic
scale) frequencies between 0.00016 ≤ ωτL ≤ 3.0. The energy is normalized by
E0, calculated from a stationarily forced solution with e = 0 and averaged as E.
The oscillating response ∆(t) of the system is defined in the same way as for the
GOY model, see Eq.(4.9). Then, as for the GOY calculations, the averaged signals
Enorm(t) are fitted with Eq.(4.10). The fit parameter Econst is again near to 1 for all
frequencies, Econst = 1.0064 ± 0.0065. In Fig.4.11 the time averaged responses and
the normalized energy input rates are plotted for four different driving frequencies.
Also the fits according to Eq.(4.10) are included as dashed lines but are indistinguish-
able from the solid lines for the energy signal itself.

We observe in Fig.4.11 for REWA the same features as in Fig.4.8 for the GOY
model and in Fig.3.1 in Chapter 3 for the mean-field model. For the two lower fre-
quencies the response amplitude remains almost constant and is about 2/3 of the
amplitude of the energy input rate, whereas for the two higher frequencies the re-
sponse amplitude strongly decreases. This trend becomes more clear in Fig.4.2a in
Section 4.1, where the amplitude of the response – determined from the fit (4.10) –
is shown as a function of the driving frequency (full dots). For low driving frequen-
cies A ' 2/3, whereas for high frequencies the amplitude decreases as 1/ω. The
crossover between the regime of constant amplitude and the one of 1/ω-decay takes
place at ωcrossτL ' 0.011, i.e., at a much smaller frequency than expected from the
original case of the mean-field theory in which the crossover was at ωMF

crossτL = 1
with b = 6. We understand this as follows. In Section 4.3.1 it was mentioned that the
Kolmogorov constant in the REWA simulation is b = 83.5 instead of b = 6 − 9 as in
the experiments. In the figures of the mean-field approach [4] we have set b = 6. The
mean-field solution for a general b revealed that the crossover frequency decreases
with increasing b while the positions of the response maxima are left unchanged. For
b = 83.5 the mean-field crossover frequency is at ωMF

crossτL = (6/b)3/2 ' 0.019 in
close agreement to what we observe in the REWA simulations. The response am-
plitude calculated from the mean-field model with b = 83.5 is included in Fig.4.2a
as dashed line. Apart from the changed crossover frequency we observe that, in the
mean-field calculations, the first response maximum at ωτL ' 0.1 is considerably
smaller and broadened as compared to the case with b = 6, given as the dashed line
in Fig.4.1a. In agreement with this, our REWA simulations (with a value b = 83.5)
show a broad maximum in the response amplitude at ωτL ' 0.028. This means it
occurs at a similar frequency as the mean-field model. The maximum becomes more
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Figure 4.11: Energy input rate enorm
in = 1 + e sinωt (dotted lines) and energy Enorm (solid

lines) for four different modulation frequencies ω as calculated in the REWA simulation. The

energy input rate is modulated with a modulation amplitude of 30% of the constant energy

input rate, i.e., e = 0.3 in Eq.(4.16). Also included is the fit to the energy data cf. Eq.(4.10)

as dashed lines but these are in all cases indistinguishable from the solid lines. The averaged

time series of Enorm are repeated once for better visibility. (a) ωτL = 3.16 · 10−4, (b)

ωτL = 3.16 · 10−3, (c) ωτL = 3.16 · 10−2, (d) ωτL = 0.316. For larger ωτL the energy

is indistinguishable from 1 on this scale. The crossover to the 1/ω-decay regime is in this

simulation at ωτL ' 0.011 between the frequencies of (b) and (c).

clear in the compensated plot, Fig.4.2b, where A/(ωτL)−1 is shown as a function of
frequency. There, we observe a deviation from the 1/ω-decay of the amplitude by a
factor 1.4 at the maximum in the REWA simulations. The mean-field maximum has
a height of 2.8. The subsequent maxima and minima in the mean-field model occur
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at frequencies where the amplitude is already very small (A ≤ 10−2) because the
crossover to the 1/ω-regime takes place at a much smaller frequency whereas the re-
sponse maxima stay at the same frequencies as for a smaller b. Therefore, the higher
order maxima are not visible in the REWA simulations. The cascade time shows
about 2% fluctuation ins REWA as shown in Fig. 4.10. However, at small response
amplitudes these fluctuations are already large enough to wash out the higher order
response maxima.

In conclusion, the REWA system reproduces qualitatively the features of mod-
ulated turbulence as predicted by the mean-field model including the first response
maximum. The latter is considerably weakened due to the large Kolmogorov constant
in REWA. Another consequence of the large b is, that the crossover between constant
amplitude and 1/ω-decay is shifted towards smaller frequencies, and therefore the
higher order maxima and minima are already at very small amplitudes where the
fluctuations in the cascade time scale are finally large enough to wash them out. We
cannot clarify, at present, how close the response in direct numerical simulations –
which lead to an order of magnitude smaller b – will come to the mean-field features,
but we expect a clearly visible first maximum at least.

4.4 Conclusions

We have simulated the response of modulated turbulence within two numerical mod-
els. Namely, we have used the GOY shell model and the reduced wave vector set ap-
proximation of the Navier-Stokes equation (REWA). The results are compared with
predictions from a mean-field theory. For a modulated energy input rate this mean-
field theory had predicted a constant response amplitude for low frequencies and a
1/ω-decay for high driving frequencies. In addition, at certain frequencies connected
with the energy cascade time scale, a sequence of maxima and minima of the response
amplitude is observed.

Both numerical models well reproduce the basic trend, i.e., the constant ampli-
tude for small ω and the 1/ω-decrease for large ω. The main response maximum
can be observed in both numerical models, although it is weakened due to fluctua-
tions. The higher order maxima and minima as predicted by the mean-field theory
cannot be identified in the simulations. Obviously, they are strongly washed out by
fluctuations. In the GOY model the large fluctuations are explicitly visible in a broad
cascade time distribution. We attribute these fluctuations to the strong mode reduc-
tion in the model, i.e., they are an artifact of the model properties and not a feature of
real turbulence. In the reduced wave vector set approximation of the Navier-Stokes
equation these fluctuations are much weaker, and, we believe, more realistic for real
turbulence, as more modes are taken into account. However, due to an overesti-
mated Kolmogorov constant b in REWA the higher order maxima are considerably
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reduced, and therefore washed out by the fluctuations although being smaller than
the GOY-fluctuations. Therefore, we believe, that in real turbulence, with a realistic
Kolmogorov constant and only narrow fluctuations of the energy transfer time the
first maximum should be clearly observable and possibly also the higher order ex-
trema in the response. Thus, the predictions of the mean-field model, which excludes
all fluctuations, might be quite reasonable for real turbulence. To further study the
response maxima numerically, it is necessary to perform full numerical simulations
of the Navier-Stokes equation, as then all relevant time scales including their fluctua-
tions are reproduced realistically, which turned out to be essential for the observation
of the response maxima.

Recent experiments on modulated turbulence [6] revealed evidence for the re-
sponse maxima. These experiments may be more comparable to the case of a modu-
lated force instead of a modulated energy input rate. We have studied this case also
within the mean-field model and have found basically the same behavior of the en-
ergy response as for a modulated energy input rate. In addition, the amplitude of
the energy input rate showed “wiggles” at the same frequencies where the energy
response had maxima. In the experiments the response maxima were measured in
the energy input rate, which can be regarded as a response of the system as well in
this case. Also the constant amplitude for low driving frequencies and the 1/ω-decay
of the velocity response – which in leading order is corresponding to a 1/ω-decay of
the energy response as well – have been observed in the experiments. Here, we have
studied the case of a modulated driving force within the GOY shell model. Also in
this simulation, the response amplitude behaves basically as in the mean-field model,
i.e., it decreases as 1/ω. The energy response amplitude as well as the amplitude of
the energy input rate show the main maximum. Due to the above mentioned large
fluctuations all higher order maxima are washed out in the GOY model.

There are two regimes in the frequency behavior of the response amplitude,
namely a constant amplitude at low ω and a decreasing amplitude at high ω. The
present simulations give further confidence that the crossover frequency between
these two regimes gives the correct order of magnitude of the cascade time scale,
i.e., in experiments it can be used to measure this time scale as suggested in refer-
ence [6].

Both models in the present study were able to reproduce the main features of
the frequency behavior of the response amplitude in modulated turbulence as pre-
dicted by the mean-field model, however, both also have their shortcomings, which
prevent us from correctly predicting the behavior of real turbulence in all quantitative
details. Therefore, we believe, that it is worth to further study modulated turbulence
numerically as well as experimentally.
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Chapter 5

How Snapping Shrimp Snap:

Through Cavitating Bubbles ∗

The snapping shrimp (Alpheus heterochaelis) produces a loud snapping sound
by an extremely rapid closure of its snapper claw. It was commonly believed
that the sound is generated when the two claw surfaces hit each other. We show
that the sound, in fact, originates from the collapse of a cavitation bubble. Dur-
ing the rapid snapper claw closure a high-velocity water jet is emitted from the
claw with a speed exceeding cavitation conditions. Hydrophone measurements
in conjunction with time-controlled high-speed imaging of claw closure demon-
strate that the sound is emitted at the cavitation bubble collapse. A model for the
bubble dynamics based on a Rayleigh-Plesset type equation quantitatively ac-
counts for the time dependence of the bubble radius and for the emitted sound.
One of the functions of the snapping is to stun or even to kill prey animals. Here
we have thus shown that snapping shrimp indeed possess an effective acoustic
weapon based on a collapsing cavitation bubble.

5.1 Introduction

The oceans may be deep, but they are not at all quiet [1]. Listening to the sounds in
the oceans one would hear the sound of waves, produced by tides, winds and thunder-
storms, and of falling rain, hail and snow. In addition, one can hear biological sounds
of fish, dolphins, whales and snapping shrimp. The latter, in particular, produce

∗See also M. Versluis, B. Schmitz, A. von der Heydt, and D. Lohse, How Snapping Shrimp Snap:

Through Cavitating Bubbles, Science 289, 2114 (2000)
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Figure 5.1: (A) Alpheus heterochaelis - one of the largest snapping shrimp. The large snapper

claw may be either on the right or the left in both sexes. Modified after Brooks & Herrick [8].

(B) Close-up of the snapper claw in its cocked position. The claw is made transparent by

the use of methyl salicylate. The claw has a protruding plunger (labeled pl) on the dactyl

(d) and a matching socket (s) in the immobile propus (p) (Photograph by B. Seibel). During

the extremely rapid closure of the snapper claw a high-velocity water jet is formed when the

plunger displaces the water from the propus socket.

the dominant level of ambient noise in (sub)tropical shallow waters throughout the
world [2]. These shrimp usually occur in such large numbers that there is continuous
snapping, providing a permanent crackling background noise, commonly associated
with the sound of burning dry twigs [3]. The snapping sound can be heard day and
night [4], with source levels as high as 190 to 210 dB re 1 µPa at 1 m distance (peak-
to-peak) [5, 6]. This severely limits the use of underwater acoustics for active and
passive sonar, both in scientific and naval applications. The frequency spectrum of a
snap is extremely broad, ranging from tens of hertz to beyond 200 kHz [5]. The noise
of snapping shrimp is therefore also used as a source for creating pictorial images of
objects in the ocean through ensonification [7].

A snapping shrimp of the species Alpheus heterochaelis (about 5.5 cm in size)
is depicted in Fig.5.1a. The shrimp produces the snapping sound by an extremely
rapid closure of its large snapper claw, which may reach 2.8 cm in length, about
half its body size. The claw (Fig.5.1b) has a protruding plunger on the dactyl and
a matching socket in the propus. Before snapping, the claw is cocked open by co-
contraction of an opener and a closer muscle, building up tension until a second closer
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muscle contracts [9]. This results in an extremely rapid closure of the claw [10]. A
high-velocity water jet is formed when the dactyl plunger is driven into the propus
socket, displacing water [11, 12]. The water jet is received and analyzed by sensory
hairs on the snapper claw of con-specific snapping shrimp. Therefore the snapping
plays an important role in intra-specific communication [13]. In addition, it is used
to defend a shelter or territory against intruders as well as to stun and even kill prey
animals [11, 14].

The loud impulsive snap of the snapping shrimp has been attributed to the me-
chanical contact made when the dactyl and the propus edges hit each other as the
claw closes [6, 15]. Here we will show that the sound of snapping shrimp originates
solely from the collapse of a cavitation bubble that is generated by the fast water jet
resulting from the rapid claw closure. The water jet velocity is so high that the corre-
sponding pressure drops below the vapor pressure of water. Sea water contains tiny
air bubbles, called nuclei [16]. Such a micro-bubble, if located between the dactyl
and the propus of the snapper claw, will grow in size when it is entrained in the region
of low pressure generated through the water jet. Subsequently, it collapses violently
when the pressure rises again.

5.2 Experimental results

The experiments were performed with 7 individuals of A. heterochaelis. The shrimp
was positioned on a small textile platform in a sea water aquarium and tethered
to a vertical holder by a plastic nut glued to its back. The snap was evoked by
gently touching the freely movable snapper claw with a soft paintbrush. A hy-
drophone with an upper frequency limit of 100 kHz was positioned at a small dis-
tance from the shrimp. Simultaneously, high-speed images were recorded with a
digital monochrome video camera at a frame rate of 40500 frames per seconds (fps)
with a resolution of 64×64 pixels. The image acquisition was triggered by the sound
of the snap. A typical hydrophone signal is shown in Fig.5.2. The main peak at
t = 0 is followed by a very broadband signal, which is partly due to the reflections
of the main signal at the aquarium walls located at a minimum distance of 15 cm.
Therefore, the first reflections start after 200 µs. The hydrophone signal shows a pre-
cursor signal before the main peak, similar to that previously observed in recordings
of the smaller Synalpheus paraneomeris snapping shrimp [5].

A sequence of high-speed images, showing the snapper claw from the top, is
presented in Fig.5.3. The snapper claw is in its cocked position in frame 1. Full
closure of the claw is achieved at frame 2 (600 µs later) followed by bubble growth
(within 375 µs, although the onset of bubble growth is not visible in this view) and
bubble collapse at t = 0 in frame 3. The images show that the cavitation bubble,
which was recorded in each of our 108 experiments, is non-spherical and elongated
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Figure 5.2: Hydrophone signal of a snap by an Alpheus heterochaelis female measured at a

distance r = 4cm. Note the precursor signal before and the broadband signal after the main

peak at t = 0. The broadband signal is partly due to the reflections of the main signal at the

aquarium walls. The small peak at t = −0.425 ms coincides with the collapse of a small

cavitation bubble under the claw [17].

in the direction of the water jet. The bubble grows to a maximum equivalent radius
of 3.5 mm on average. At collapse (frame 3), the transparent single cavitation bubble
breaks apart and an opaque cloud of small bubbles is formed, which finally dissolves.

The temporal correlation between the snapping sound and the bubble dynamics
was determined from these high-speed video recordings. The hydrophone signal
and the exposure timing of the high-speed camera were measured simultaneously,
referenced to a trigger signal. The main peak of the snapping sound and the collapse
of the cavitation bubble always coincide. An analysis of 19 different experiments
showed that the temporal correlation of sound and bubble collapse is achieved with
a standard deviation of 0.86 frames, i.e. accurate within 25 µs. Remember that the
claw is closed in frame 2, 650 µs (or 26 frames at 40500 fps) before bubble collapse!

The angular velocity of dactyl rotation was determined from the position of the
tips of dactyl and propus relative to the position of the pivot point. Claw closure be-
gins with moderate angular velocities (order 100 rad/s) for large opening angles. In
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Figure 5.3: A sequence of high-speed images in top view showing the closure of the snapper

claw taken at 25 µs-intervals (40500 frames per second). Each tick mark on the time axis

of the hydrophone signal in Fig.5.2 indicates an image recording. The dactyl rotation starts

at frame 1 at t = −1.250 ms. The main peak of the sound emission is at t = 0 (frame 3)

and coincides with the collapse of the cavitation bubble. Full closure of the claw was already

achieved at frame 2, 0.65 ms before bubble collapse.

the final stage of claw closure, the dactyl rotates with an impressive 3500 rad/s. An-
gular velocities of this order were measured before with a thin laser-coupled optical
fiber glued onto the distal tip of the dactyl [10].

The occurrence of cavitation bubbles during the snap of the snapping shrimp
now also explains why the snaps are so harmful to prey animals. It is cavitation dam-
age, known to damage e.g. ship propellers and centrifugal pumps. More specifically,
here we have an example of jet cavitation, not wake cavitation as in ship propul-
sion. The destructive force of a collapsing cavitation bubble can be seen during
inter-specific encounters: small prey (e.g. worms, goby fish or other shrimp) can
be stunned or killed [14]. In a recent study [18] it was found that small crabs (Eu-
rypanopeus depressus) are injured by the snap of snapping shrimp. The interaction
distance, defined as the distance of the tip of the snapper claw to the nearest body
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part of the opponent measured along the snapper claw long axis, was reported to be 3
mm on average. In our experiments it is shown that the cavitation bubble collapses 3
mm in front of the tip of the snapper claw (see Fig.5.3). In intra-specific encounters
the snap is not used to injure the opponent, but rather as a communication signal.
The interaction distance is 9 mm on average [13], far enough away from implosion
danger.

5.3 Theoretical Modeling

The velocity of the water jet was estimated from the speed of the cavitation bub-
ble. High-speed video close-ups of the cavitation bubble indicate velocities of the
front end of the bubble as high as 32 m/s, while the bubble expands longitudinally
with a speed of 9 m/s. This indicates a flow with a speed vmax in the order of 25
m/s. This high water jet velocity implies a pressure drop from the ambient pressure
P0 = 105 Pa, which can, in principle, be modeled through Bernoulli’s law. However,
there is limited information on the actual temporal and spatial shape of the velocity
field, and consequently also on the pressure field. Nevertheless, the unsteady term in
Bernoulli’s law, ρ∂tΦ (where ρ represents the density of water and ∂t is the partial
derivative with respect to time, and Φ is the velocity potential) can be estimated by
dimensional arguments and is smaller or at most of the same order of magnitude as
the kinetic energy term. Therefore we estimate the magnitude of the pressure drop
as Pa ∝ 1

2ρv2
max. With the above water jet velocity, Pa ∝ 3105 Pa. Moreover, we

assume a Gaussian pressure distribution in time:

P (t) = P0 − Pa exp

(

−4(ln 2)
(t − t0)

2

σ2

)

, (5.1)

where σ represents the width of the Gaussian pulse. As the pressure P (t) drops below
the vapor pressure of water (Pvap = 2 · 103 Pa), cavitation occurs.

The bubble that arises at the tip of the snapper claw is not spherical. Model-
ing the dynamics of non-spherical bubbles is non-trivial [19], requiring that all pa-
rameters such as the water jet velocity and width, the size and shape of the bubble
nucleus, etc. be precisely known. This is not the case. However, to get at least a
semi-quantitative statement, we can assume a spherical bubble. Its dynamics is well
described by Rayleigh-Plesset type equations [16].

Typical bubble nuclei in sea water are between 1 and 50 µm in radius [16, 20].
We assume a nucleus initially filled with air of initial radius R0 = 10µm under
normal conditions. The results hardly depend on the choice of R0. The response of
the bubble nucleus on the pressure reduction (Eq.(5.1)) is described by the (modified)
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Keller-Equation [21], which is of Rayleigh-Plesset type:
(

1 − Ṙ

c

)

RR̈ +
3

2

(

1 − Ṙ

3c

)

= −4ν
Ṙ

R
− 2S

ρR
(5.2)

+
1

ρ

(

1 +
Ṙ

c

)

(p(R, t) + Pvap − P (t))

+
R

ρc

d

dt
p(R, t).

The parameters for an air bubble in water are the viscosity of water ν, its density ρ,
the speed of sound c, and the surface tension of the air-water system S. The terms
proportional to Ṙ/c take into account the effects of liquid compressibility. p(R, t) is
the pressure inside the bubble and can be modeled by a van der Waals equation of
state:

p(R, t) =

(

P0 − Pv +
2S

R0

)

(

R3
0 − h3

R(t)3 − h3

)γ

, (5.3)

with the van der Waals hard core radius h = R0/8.54 [22]. From an estimation

of the Peclét number, Pe = RṘ
κ � 1, where κ is the thermal diffusivity, we find

that we can assume adiabatic behavior [16, 23, 24], i.e., γ = 7/5 for nitrogene.
During the relatively slow process of expansion water vapor enters the bubble, which
reduces the violence of the collapse. Since the amount of water vapor inside the
bubble is diffusion-controlled [25], we couple an additional equation for the water
vapor concentration inside the bubble to the Keller equation [26].

For given bubble dynamics R(t) the emitted sound wave at distance r from the
bubble simply follows from [27, 28]

Ps(r, t) =
ρR

r
(2Ṙ2 + RR̈). (5.4)

In Fig.5.4 the modeled pressure reduction (Eq.(5.1)) and the calculated bubble radius
resulting from Eq.(5.2) are plotted as a function of time. As the pressure decreases,
the bubble begins to grow up to a maximum radius of about 3.6 mm. Note the time
delay through inertia: At maximum bubble radius the pressure has already risen again
to the ambient pressure P0. Subsequently, the bubble collapses rapidly within about
300 µs. After the bubble collapse, the numerical solution of Eq.(5.2) shows some
after-bounces. These are not observed in the experiment, as the bubble is destroyed
upon collapse. Indeed, if we perform a linear stability analysis of the spherical bubble
[24, 29], we find exactly the same feature at bubble collapse: the bubble is destroyed
through a Rayleigh-Taylor type instability.

The model parameters Pa and σ were fitted to match the theoretical radius with
the experimentally determined equivalent bubble radius of the ellipsoidal cavitation
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Figure 5.4: The calculated bubble radius R(t) as a function of time (solid line). The temporal

change of the pressure field P (t) that was modeled for this calculation is also given (dotted

line). The model parameters (Pa = 2.2 · 105Pa; σ = 360µs) were fitted to match the theo-

retical radius with the experimentally determined equivalent bubble radius of the ellipsoidal

cavitation bubble indicated by the filled circles.

bubble (filled circles in Fig.5.4). Using these model parameters, the calculated sound
pressure curve (from Eq.(5.4)) is in good agreement with the experimental sound
signal, see Fig.5.5. The main acoustical signal is preceded by a small sinusoidal pre-
cursor, caused by the bubble expansion and contraction. At collapse (t = 0), the
main acoustical signal is emitted. The narrow peaks in the calculated sound signal
after the main pressure peak are produced by the aforementioned after-bounces and
should not be considered here, as the bubble is destroyed on collapse. Quantitatively,
the model overestimates the measured sound pressure, especially the maximum pres-
sure. The reason is threefold: (i) The non-spherical shape of the real bubble reduces
the strength of the collapse and therefore the intensity of the emitted sound, (ii) ther-
mal damping effects [30] are not included in the model, and (iii) on the experimental
side the limited bandwidth of the hydrophone underestimates the peak value of the
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Figure 5.5: (A) The calculated sound pressure Ps(r, t) for r = 4 cm with Pa = 3.0 · 105 Pa

and σ = 210µs. The main peak at t = 0 (Ps = 2 ·108 Pa) is drawn off-scale to emphasize the

precursor signal. (B) An enlarged view of the experimental sound pressure curve of Fig.5.2.
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sound pressure.
The calculated width of the main acoustical peak for the modeled spherical bub-

ble is extremely small, in the order of 100 ps. This δ-like pulse corresponds to a
white noise spectrum. Indeed, in previous review articles [1, 5] on ambient noise it
was noted that the sound of the snapping shrimp covers a wide frequency range, even
in excess of 200 kHz. For a more quantitative comparison of the theoretical and ex-
perimental spectrum, one must include the asphericity of the collapse, the acoustical
emission of the bubble fragments, and the sound reflections from the walls into the
model, which is beyond the scope of this work.

The variation in claw size, claw shape, cocking duration, applied closer muscle
force and claw closure speeds of snapping shrimp all lead to slightly different sound
signals and obviously they all have different water jet characteristics. By adjusting
the two parameters Pa and σ in our model we are able to account for the variety of
precursor signals measured from the snaps of the 7 analyzed snapping shrimp [17].
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Chapter 6

Conclusions

In this work we have studied different aspects of nonideal turbulence. A variable-
range mean-field theory which has originally been developed for homogeneous, iso-
tropic and stationary turbulence [1], has been successfully extended to weakly aniso-
tropic flow as well as to time periodic driving forces. Although the mean-field theory
does not take into account turbulent fluctuations, it seems to be able to correctly pre-
dict some basic features of nonideal turbulent flows. This is confirmed by comparing
the results with experimental and numerical data. Clearly, the limitation of this ap-
proach is that intermittency effects cannot be captured. In this chapter we summarize
and discuss the main results of the previous chapters.

The first nonideal property we considered was (weak) anisotropy (Chapter 2,
[2]). The second order velocity structure function is decomposed into its SO(3)
invariants [3] and the scaling behavior of the different j-amplitudes of the SO(3)-
decomposition is derived. For the isotropic sector, j = 0, Kolmogorov scaling is
recovered, dj=0 ∝ r2/3. The scaling of the anisotropic sectors, j > 0, can be cal-
culated order by order in the spherical harmonics Yjm. The higher order j scaling
exponents depend on the type of forcing. For a non-analytic forcing, representing
shear flow, the same mean-field scaling, dj ∝ r4/3, is found for all nonzero and even
j, whereas an analytic type of forcing yields dj ∝ rj+2/3. The odd j-amplitudes
vanish in this case due to symmetry. Analytic means that the velocity profile and the
forcing are analytic in the components of the position x and the scale vector r. The
values found for the non-analytic forcing are consistent with experimental [4] and
numerical [5] data for the j = 0 and j = 2 sectors. This type of forcing may be more
general than the analytic forcing, and therefore, may be applicable for a wider range
of flows. However, this finding suggests that the scaling exponents of the anisotropic
sectors may not be universal as they seem to depend on the type of forcing.

For the higher sectors j > 2 the situation is still unclear. While the non-analytic
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forcing suggests the same mean-field scaling exponents for all higher order j sectors,
increasing scaling exponents with increasing j (for j = 4 and j = 6) have been found
in numerical simulations [6]. However, for these high j sectors no experimental data
are available yet. In the experiments of reference [4] a second order object has been
used to measure the scaling exponent for j = 2 which in principle also contains
higher j-contributions. If the contributions for j > 2 have scaling exponents very
different from 4/3 one would not expect clean scaling behavior for this second order
object, as then it would be a mixture of different power laws. On the other hand, the
higher j-contributions are expected to be much smaller than the j = 2 contributions,
and therefore, they may only weakly influence the scaling behavior, i.e., they may be
negligible for determining the j = 2-scaling exponent. Therefore, the situation is not
conclusive for the higher j-amplitudes yet.

Another aspect of nonideal turbulence is studied in the Chapters 3 and 4, [7, 8].
There, we assume fully developed homogeneous and isotropic turbulence which is
driven by a modulated driving. The energy transfer time τ , which represents the
average time the energy stays in the system while it is downcascading the interac-
tion cascade, plays a crucial role in this case. It can be estimated by the large eddy
turnover time τL, i.e., τ = aτL, where a is a factor of order 1. The variable-range
mean-field theory is extended to a situation with a modulated driving in Chapter
3. In this theory the cascade time τ is assumed to be constant. In real turbulence,
nevertheless, this time scale will be fluctuating. To account for the effect of turbu-
lent fluctuations, we performed numerical simulations within two dynamical cascade
models of turbulence, see Chapter 4. There, a periodic driving is applied to the GOY
shell model [9–16] as well as to the reduced wave vector set approximation of the
Navier-Stokes equation (REWA) [17–19]. The main results of all three approaches
are summarized in Table 6.1. Two cases are considered: (i) a modulated energy input
rate ein(t) = ε0(1 + e sinωt) (see left column of Table 6.1) and (ii) a modulated
force in the Navier-Stokes equation, f = f 0(1 + ef sinωt) (right column of Table
6.1). The response of the system is studied in terms of the total energy E(t) or the
Reynolds number Re(t) of the system.

For the modulated energy input rate we find the following behavior of the re-
sponse amplitude A(ω) (defined by E(t)/E0 = 1+ eA sin (ωt + Φ) where E0 is the
stationary mean value of the energy): For small driving frequencies (ωτL � 1) the
response amplitude is constant, whereas for large driving frequencies (ωτL � 1) the
amplitude decreases as A(ω) ∝ 1/ω indicating that at very large frequencies the os-
cillation of the driving becomes so fast, that the system cannot follow the oscillation
of the driving any more and feels only a constant mean energy input rate. This behav-
ior is found in the mean-field model as well as in both numerical models, see Figs.
3.2, 4.1, and 4.2. The crossover between the two regimes takes place at ωτL = 1
in the mean-field model, and at ωτL ' 1/a in the GOY model, i.e., at frequencies
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Modulated energy input rate Modulated force

Mean- ω � 1/τ : A(ω) ' 2/3 ω � 1/τ : A(ω) ' 1

field Aein(ω) ' 1.5

theory ω � 1/τ : A(ω) ∝ 2/(3ωτL) ω � 1/τ : A(ω) ∝ 2/(3ωτL)

Aein(ω) ' 1

Crossover at ωτL = 1 Crossover at ωτL = 1

Response maxima and minima: Response maxima and minima:

A(ω) has maxima A(ω) has maxima

at ωr(0)τL ' 1/a at ωr(0)τL ' 1/a

and ωr(n)τL ' nπ
a , n even and ωr(n)τL ' nπ

a , n even

A(ω) has minima A(ω) has minima

at ωr(n)τL ' nπ
a , n odd at ωr(n)τL ' nπ

a , n odd

Aein(ω) has wiggles

at ωr(0)τL ' 1/a

and ωr(n)τL ' nπ
a , n even

GOY ω � 1/τ : A(ω) ' 2/3 ω � 1/τ : A(ω) ' 1

Aein(ω) ' 1.5

ω � 1/τ : A(ω) ∝ 1/(ωτL) ω � 1/τ : A(ω) ∝ 1/(ωτL)

Aein(ω) ' 1

Crossover at ωτL ' 1/a Crossover at ωτL ' 1/a

Response maxima and minima: Response maxima and minima:

A(ω) shows main maximum A(ω) shows main maximum

Aein(ω) has maximum

at ωτL ' 1/a

Fluctuations of τ overestimated Fluctuations of τ overestimated

REWA ω �
(

6
b

)3/2
1
τ : A(ω) ' 2/3

ω �
(

6
b

)3/2
1
τ : A(ω) ∝ 1/(ωτL)

Crossover at ωτL ' (6/b)3/2 work

Response maxima and minima: in progress

A(ω) shows main maximum

Kolmogorov constant b = 83.5

overestimated

Table 6.1: Main results of the three studied models for modulated turbulence
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of the same order of magnitude. In the REWA model the crossover takes place at
a much smaller frequency. This is because in REWA the Kolmogorov constant b
is overestimated by one order of magnitude. With our choice of wave vectors we
have b = 83.5 instead of the experimental values b = 6 − 9 [20–23], which reflects
the considerable reduction of the transport of energy through the system due to the
mode selection. With this large value of b the crossover frequency as predicted by
the mean-field model is at ωcrossτL = (6/b)3/2 , which is in good agreement with the
crossover frequency observed in REWA. Thus, in experiments, where b takes values
between 6-9, the crossover frequency can be used to estimate the energy cascade time
scale. This has been done in recent experiments [24].

The mean-field response amplitude shows several maxima and minima at fre-
quencies connected to the energy cascade time scale τ , see Fig.3.2. The physical
explanation for these response extrema is that at the response maxima, the energy
dissipation and the response are in phase, meaning that the transport of energy is
very efficient, while it is very inefficient at the response minima. At the latter fre-
quencies the energy dissipation rate and the response are exactly out of phase. The
main maximum can also be observed in both numerical models, cf. Figs. 4.1 and 4.2,
although it is weakened by the fluctuations. The higher order maxima and minima
are completely washed out by turbulent fluctuations in the two numerical models.
On the other hand, in the GOY model these fluctuations are artificially large due to
the approximation of only one mode per cascade level, and therefore, may not be
regarded as an effect of real turbulence. In the REWA simulation, where many more
modes per level are taken into account, the fluctuations are much smaller, and proba-
bly more realistic. However, in the REWA simulation, too, we observe only a weak
and broad first maximum near to the crossover frequency. This can be explained by
the large Kolmogorov constant b in this model. Also in the mean-field model, the first
maximum is considerably washed out if we assume the same large value of b, and,
as the crossover to the 1/ω-decay regime is much earlier, the following maxima and
minima are shrinked towards very small amplitudes. Therefore, we do not expect to
observe these higher order maxima in the simulation anyhow, because at these small
amplitudes fluctuations become too large. The large Kolmogorov constant indicates
that in this model the energy fluctuations still are stronger than in the Navier-Stokes
dynamics.

Also recent experiments in a cylinder between two counter rotating disks [24] re-
vealed evidence for the response maxima. In addition they found a constant response
amplitude for low driving frequencies and a 1/ω-decay of the velocity response for
large frequencies. The experiments were performed with a modulated stirrer velocity.
This may be more comparable to a modulated force instead of a modulated energy
input rate. Therefore, we considered this case in the mean-field model as well as in
the GOY model. For the energy response amplitude we basically find the same fre-
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quency behavior as for a modulated energy input rate, including the response maxima
and minima in the mean-field model, see Fig.3.7. The GOY model shows the main
maximum only due to large fluctuations, see Fig.4.3. The experimentally measured
velocity response ∆u = (u(t) − u0)/u0, where u(t) is the measured velocity mod-
ulus and u0 is the (stationary) mean velocity, is connected to the energy response
E(t)/E0, which we calculated in our models, by

E(t)

E0
=

u(t)2

u2
0

= (1 + ∆u(t))2 ' 1 + 2∆u(t) + O(∆2
u). (6.1)

Here, E0 denotes the mean (stationary) value of the energy. ∆u will be small be-
cause also the modulation amplitude of the forcing is set to be small, i.e., the term
∝ O(∆2

u) � 1 is negligible in Eq.(6.1). Therefore, the 1/ω-decay for large driving
frequencies, which is found in the experiments for the amplitude of ∆u is in agree-
ment with our findings of a 1/ω-decay for the amplitude of the energy response.
The constant amplitude for low frequencies is found in experiments as well as in our
models. In the case of a modulated force, the energy input rate is not a controlled
quantity any more. In the experiments it has been measured as another response of
the system which showed the main response maximum. In the mean-field approach
we find the following behavior of the amplitude Aein(ω) of the energy input rate: It
starts with a value of Aein(ω) ' 1.5 for low frequencies and merges at 1 for large
frequencies. This indicates, that at large frequencies the velocity does not feel the
oscillation of the force any more, but the oscillation of the energy input rate is only
a consequence of the oscillating force. At the frequencies, where the response am-
plitude A(ω) has maxima, the energy input amplitude Aein(ω) has “wiggles”, i.e., a
maximum directly followed by a minimum. This indicates that in the case of a mod-
ulated driving force, the response maxima can also be measured in the energy input
rate as has been done in the experiments. The GOY model again reproduces the basic
trend of the mean-field results and also shows the main maximum in the amplitude
Aein(ω). However, due to large fluctuations of the cascade time scale the higher or-
der maxima are completely washed out. For confirmation it would be interesting to
see whether the observed behavior of the energy input rate can also be observed in
the REWA system.

In conclusion, the basic trend of the response function to a modulated driving
as predicted by the mean-field theory can be reproduced by the numerical simula-
tions which include turbulent fluctuations. Also, the main response maximum at a
frequency connected to the energy cascade time scale can be observed in accordance
with the mean-field results. This as well as the recent experiments which also show
the basic features as predicted by the mean-field model clearly indicates, that these
maxima are not an artifact of the mean-field model.

However, both numerical models have their artifacts as they either overesti-
mate the fluctuations of the cascade time scale (GOY) or the Kolmogorov constant
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b (REWA) which is connected to the energy transport through the system. There-
fore, they may not be particularly suited to study the response maxima and minima
in modulated turbulence. The fluctuations in the cascade time scale as calculated in
the REWA simulation –which are considered to be more realistic than in the GOY
model – are only small. This gives us some confidence that with a realistic Kol-
mogorov constant the main response maximum and possibly even the higher order
maxima and minima may be observable in real turbulence. To further study the prob-
lem numerically, direct numerical simulations of the Navier-Stokes equation seem to
be necessary. As we have seen in the two turbulence models, it is essential for analyz-
ing modulated turbulence that all relevant time scales including their fluctuations are
correctly described. Also experimentally it seems worthwhile to further investigate
modulated turbulence. E.g., an interesting question would be whether the geometry
of the turbulent system as used in [24] changes the response maxima. Furthermore,
it would be worth to study different driving mechanisms. In [25] another kind of
driving of the same experimental setup as used in [24] is investigated, namely there,
the torque of the driving motors is controlled. This may be even more close to the
modulated force as we have assumed it in our second case (right column, Table 6.1).
It is shown in [25] that with this driving mechanism the fluctuations of the energy
input rate are considerably less than with the controlled stirrer velocity that has been
used in the experiments on modulated turbulence. Another option may be to modu-
late the energy input rate which seems to be possible in the same experimental setup,
too [26].

Until now we have investigated flows where only one of the ideal properties,
isotropy, homogeneity and stationarity, is broken. The mean-field theory seems to
be quite successful in correctly describing some basic features of nonideal turbulent
flows. However, as already mentioned in the Introduction, nature is more compli-
cated. The snap of the snapping shrimp is one example (see Chapter 5). It has been
demonstrated by experiments [27, 28] that the snapping sound is due to the collapse
of a cavitation bubble which is produced by the fast water jet emitted from the claw
during closure. This jet is clearly turbulent, anisotropic as well as inhomogeneous
and time dependent. However, in this case, the essential part of the system results to
be the cavitation bubble which produces the sound by its collapse. The dynamics of
the bubble and the emitted sound can be modelled by a Rayleigh-Plesset type equa-
tion [29–31], while for the other components of the turbulent water flow assumptions
have to be made. This equation describes the dynamics of the bubble radius R for a
spherical bubble under a time dependent external pressure. The particular time de-
pendence of the pressure is assumed as a Gaussian distribution, where its height and
width are estimated only from the mean velocity and duration of the jet, respectively.
This rough estimation is sufficient to correctly predict the dynamics of the bubble
radius. The jet is turbulent, and therefore the velocity field will be considerably fluc-
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tuating, however, this does not seem to have an influence on the bubble dynamics.
For a more detailed modeling of the bubble dynamics, the temporal and spatial shape
of the velocity field around the snapper claw has to be known very accurately. Fur-
thermore, the asphericity of the bubble collapse as well as the sound emission from
bubble fragments have to be taken into account. The assumption of a spherical bubble
leads to an overestimation of the emitted sound at bubble collapse as spherical bub-
bles collapse much more violently than aspherical ones. This would fairly complicate
the model, however, it will not dramatically change the qualitative results from this
simplified model.

In conclusion, simplified (mean-field) models as used in this thesis seem to be
appropriate tools for describing some basic features of nonideal turbulence. Clearly,
the limitations of these models are that they neglect turbulent fluctuations. The latter
may change the mean-field properties in some cases, as e.g., the response maxima in
modulated turbulence. However, those mean-field properties are (partly) observable
in real turbulence and therefore are not artifacts of the model. We hope that the mean-
field studies of this work will stimulate further experimental and numerical studies
on fundamental properties of nonideal turbulence.
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Summary

Turbulent flows are ubiquitous. This holds for flows in nature such as the atmosphere
of the earth or a waterfall as well as for many flows in engineering applications. The
governing equation of fluid motion, the Navier-Stokes equation, is known since 150
years, and the basic properties can be understood from this equation. However, most
(analytic) approaches to turbulence assume ideal flows, i.e., they assume homogene-
ity, isotropy and statistical stationarity. On the other hand, almost all realistic flows
are nonideal in the sense that at least one of the above mentioned assumptions is
broken. In this thesis several questions of nonideal turbulence are addressed on a
fundamental level. A variable-range mean-field theory can be extended to weakly
anisotropic as well as time dependent flows.

In Chapter 2 the scaling exponents of the second order velocity structure func-
tion for weakly anisotropic turbulence are derived within the mean-field theory. For
this purpose, the structure function tensor is decomposed into its SO(3) invariants.
In this decomposition, isotropic and anisotropic parts can be easily distinguished.
For the isotropic part of the structure function, represented by the j = 0 sector
in the SO(3) decomposition, Kolmogorov scaling is recovered. The scaling of the
anisotropic parts (j > 0-sectors) is found to depend on the type of forcing. A – fairly
general – non-analytic forcing leads to scaling exponents of 4/3 for all anisotropic
sectors j > 0 whereas an analytic forcing leads to scaling exponents as high as
j + 2/3. For j = 0 and j = 2 the results for the non-analytic forcing are in agree-
ment with experimental and numerical data.

A time dependent driving to fully developed turbulence is considered in Chap-
ter 3 within the variable-range mean-field theory. The response of the system to a
modulated driving is observed in the second order moments of the large scale ve-
locity difference D(L, t) = 〈〈(u(x + L) − u(x))2〉〉 ∝ Re2(t) for varying driving
frequency ω. For low frequencies the system can follow the oscillations of the driv-
ing, whereas for high driving frequencies the amplitude of the response decreases as
∝ 1/ω. In addition, the response amplitude shows alternating maxima and minima at
frequencies connected with the frequency scale of the energy cascade and multiples
thereof.
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Turbulent fluctuations lead to a fluctuating energy cascade time scale. These
are not included in the mean-field theory. In order to account for the effect of fluc-
tuations, in Chapter 4 modulated turbulence is studied numerically within two dy-
namical cascade models of turbulence. The GOY shell model as well as the reduced
wave vector set approximation of the Navier-Stokes equation (REWA) automatically
take into account turbulent fluctuations. The basic trend of the response amplitude
as predicted by the mean-field theory can be reproduced, namely a constant ampli-
tude for low driving frequencies and a 1/ω-decay for higher frequencies. The main
response maximum can also be observed in both models, although it is weakened
due to fluctuations. The higher order maxima and minima are fully washed out by
fluctuations.

Finally, in Chapter 5 a nonideal example from nature is presented. The snapping
shrimp (Alpheus heterochaelis) produces a loud snapping sound when rapidly closing
its snapper claw. The snapping is among other things used to stun or kill prey animals.
During claw closure a high velocity water jet is emitted which lets a cavitation bubble
grow from the snapper claw. Experiments demonstrated that the snapping sound
solely originates from the subsequent collapse of the cavitation bubble and not from
the two claw surfaces hitting each other. A model for the bubble dynamics based on
a Rayleigh-Plesset type equation is set up. The results for the time dependence of
the bubble radius and the emitted sound are in remarkably good agreement with the
experimental data.



Samenvatting

Turbulente stroming is bijna overal te vinden. Dat geldt zowel voor stromingen in de
natuur zoals de atmosfeer van de aarde of een waterval als ook voor vele stromingen
in de techniek. De vergelijking, die de beweging van een vloeistof beschrijft, is de
Navier-Stokes vergelijking. Deze is sinds meer dan 150 jaar bekend en de belangri-
jkste eigenschappen van stromingen kunnen erdoor worden begrepen. In veel ana-
lytische benaderingen van turbulente stromingen wordt aangenomen dat de stroming
ideal is, wat betekent, dat homogeniteit, isotropie en stationariteit worden veronder-
steld. De meeste realistische stromingen zijn echter niet-iedaal, doordat tenminste
een van de genoemde voorwaarden niet van toepassing is. In dit proefschrift worden
verschillende vraagstukken over niet-ideale turbulentie op een fundamenteel niveau
benaderd. Een “variable range mean-field theory” voor ideale turbulentie kan uitge-
breid worden voor zowel zwak anisotrope als tijdsafhankelijke turbulente stroming.

In Hoofdstuk 2 worden schalings exponenten van de tweede orde snelheids-
structuur-functie voor zwak anisotrope turbulentie afgeleid binnen de mean-field the-
orie. Daartoe wordt de structuurtensor in zijn SO(3)-invarianten ontleed. In deze de-
compositie kan makkelijk onderscheid gemaakt worden tussen isotrope en anisotrope
delen. Voor het isotrope gedeelte van de structuurfunctie, dat gerepresenteerd wordt
door het j = 0-deel in de SO(3)-decompositie, vinden wij de Kolmogorov schaling.
Het gedrag van de anisotrope gedeelten (j > 0-sectoren) blijkt van het type aandrijv-
ing af te hangen. Een – relatief algemeen – niet-analytische aandrijving resulteert in
een schalings exponent van 4/3 voor alle anisotrope sectoren j > 0, terwijl een ana-
lytische aandrijving tot hogere schalings exponenten, j + 2/3 leidt. Voor j = 0 en
j = 2 stemmen de resultaten van de niet-analytische aandrijving overeen met zowel
experimentele als numerieke data.

Een tijdsafhankelijke aandrijving van volledig ontwikkelde turbulentie wordt in
Hoofdstuk 3 met hulp van de “variable range mean-field theory” benaderd. Hier
wordt de respons van het systeem op een gemoduleerde aandrijving waargenomen
in de tweede momenten van de snelheidsverschillen op grote schaal, D(L, t) =
〈〈(u(x + L) − u(x))2〉〉 ∝ Re2(t) voor variërende aandrijvingsfrequentie ω. Als
de frequentie klein is, kan het systeem de oscillaties van de aandrijving volledig vol-

103



104 SAMENVATTING

gen, terwijl voor grote frequenties de amplitude van de respons afneemt als 1/ω.
Bovendien heeft de respons-amplitude afwisselend maxima en minima bij bepaalde
frequenties, die gerelateerd zijn aan de frequentie schaal van de energie cascade en
veelvouden daarvan.

Turbulente fluctuaties zorgen voor een fluctuerende tijdschaal van de energie
cascade. Deze fluctuaties zijn niet in de mean-field theorie inbegrepen. Om rekening
te houden met het effect van fluctuaties bestuderen we gemoduleerde turbulentie ook
numeriek met twee dynamische cascade modellen voor turbulentie in Hoofdstuk 4.
Beide modellen, het “GOY-shell model” en de “reduced wave vector set approxima-
tion” van de Navier-Stokes vergelijking, bevatten automatisch turbulente fluctuaties.
De essentiële trend van de respons-amplitude zoals voorspeld door de mean-field
theorie wordt gereproduceerd: zowel de constante amplitude voor kleine aandrijv-
ingsfrequenties als ook de 1/ω-daling voor hoge frequenties worden in de modellen
waargenomen. Het hoofdmaximum van de respons wordt in beide modellen gezien,
hoewel het verzwakt is door de fluctuaties. De volgende maxima en minima van
hogere orde zijn niet meer zichtbaar vanwege de fluctuaties.

Afsluitend presenteren wij in Hoofdstuk 5 een niet-ideaal voorbeeld uit de na-
tuur. De pistoolgarnaal (Alpheus heterochaelis) maakt indrukwekkende knallen on-
der water door zijn schaar met grote snelheid dicht te klappen. De knallen worden
door de garnalen gebruikt om te communiceren, maar ook om een prooi te verdoven
en zelfs om te doden. Door de sluitbeweging van de schaar wordt het water tussen de
schaarhelften met hoge snelheid weggespoten. Dit leidt tot een daling van de druk,
waardoor een “cavitatie” bel kan groeien. Experimenten hebben laten zien, dat het
geluid alleen door de implosie van deze bel wordt veroorzaakt, en niet door de dicht-
slaande schaarhelften. Een model voor de dynamica van de bel wordt ontwikkeld
op grond van de Rayleigh-Plesset vergelijking. De resultaten uit het model voor de
tijdafhankelijkheid van de straal van de bel en het geluid zijn in opmerkelijk goede
overeenstemming met de experimentele data.



Zusammenfassung

Turbulente Strömungen gibt es fast überall. Beispiele finden sich sowohl in der
Natur, etwa die Erdatmosphäre oder ein Wasserfall, als auch in vielen technischen
Anwendungen. Die Gleichung für die Bewegung eines Fluids, die Navier-Stokes
Gleichung, ist seit über 150 Jahren bekannt. Die wesentlichen Eigenschaften von
Strömungen können aus dieser Gleichung verstanden werden. In den meisten ana-
lytischen Ansätzen für turbulente Strömungen werden allerdings ideale Strömungen
behandelt, d.h. Homogenität, Isotropie und Stationarität werden vorausgesetzt. Reale
Strömungen sind jedoch fast immer nicht-ideal in dem Sinne, daß mindestens eine
der oben genannten Eigenschaften nicht vorliegt. In dieser Arbeit werden einige
Fragestellungen nicht-idealer Turbulenz von den Grundlagen aus behandelt. Eine für
ideale Strömungen entwickelte skalenabhängige Mean-Field-Theorie kann sowohl
für schwach anisotrope als auch für Strömungen mit zeitabhängigen Antrieb erweit-
ert werden.

In Kapitel 2 werden die Skalenexponenten der Geschwindigkeits -Strukturfunk-
tion zweiter Ordnung für schwach anisotrope Turbulenz im Rahmen der Mean-Field-
Theorie hergeleitet. Dazu wird der Strukturfunktionstensor in seine SO(3)-Invarian-
ten zerlegt. In dieser Zerlegung können isotrope und anisotrope Anteile leicht unter-
schieden werden. Für den isotropen Anteil der Strukturfunktion, der durch den j =0–
Term in der SO(3)-Zerlegung dargestellt wird, findet man das erwartete Kolmogorov-
Skalenverhalten. Das Skalenverhalten der anisotropen Teile dagegen hängt von der
Art des Antriebs ab. Ein – relativ allgemeiner – nicht-analytischer Antrieb ergibt für
die Skalenexponenten aller anisotropen Terme j > 0 denselben Wert 4/3, während
ein analytischer Antrieb zu mit j anwachsenden Skalenexponenten j+2/3 führt. Die
Ergebnisse im Falle eines nicht-analytischen Antriebs stimmen mit experimentellen
Daten überein, die für j = 0 und j = 2 vorliegen.

Vollentwickelte Turbulenz mit einem zeitabhängigen Antrieb wird in Kapitel
3 im Rahmen der Mean-Field-Theorie behandelt. Die Antwort des Systems läßt
sich an den Momenten zweiter Ordnung der Geschwindigkeitsdifferenzen auf großen
Skalen, D(L, t) = 〈〈(u(x + L) − u(x))2〉〉 ∝ Re2(t), ablesen: sie reagieren auf
verschiedene Antriebsfrequenzen mit unterschiedlicher Amplitude. Bei kleinen Fre-

105



106 ZUSAMMENFASSUNG

quenzen kann das System den Oszillationen des Antriebs folgen, während für große
Antriebsfrequenzen die Amplitude der Antwort mit ∼ 1/ω abnimmt. Außerdem
zeigt die Amplitude der Antwort bei bestimmten Antriebsfrequenzen abwechselnd
Maxima und Minima. Diese Frequenzen werden durch die Frequenzskala der Ener-
gie-Kaskade und Vielfachen derselben bestimmt.

Turbulente Fluktuationen sorgen dafür, daß die Kaskaden-Zeitskala fluktuiert.
Diese Fluktuationen sind in der Mean-Field-Theorie nicht enthalten. Um den Effekt
der Fluktuationen zu berücksichtigen untersuchen wir in Kapitel 4 modulierte Turbu-
lenz numerisch mit Hilfe von zwei verschiedenen dynamischen Kaskaden-Modellen.
Sowohl das ,,GOY-shell model“ als auch die ,,reduced wave vector set approxima-
tion“ der Navier-Stokes Gleichung (REWA) führen automatisch zu turbulenten Fluk-
tuationen. Die wesentlichen Eigenschaften der Antwort-Amplitude, wie sie von der
Mean-Field-Theorie vorhergesagt werden, können reproduziert werden, nämlich eine
konstante Amplitude für kleine Antriebsfrequenzen und ein 1/ω-Abfall der Ampli-
tude für hohe Frequenzen. Das Hauptmaximum der Antwort wird in beiden Mod-
ellen beobachtet, allerdings wird es durch die Fluktuationen abgeschwächt. Die in
der Mean-Field-Theorie folgenden Maxima und Minima höherer Ordnung werden
vollständig durch die Fluktuationen ,,ausgewaschen“.

Abschließend wird in Kapitel 5 ein Beispiel nicht-idealer Turbulenz aus der
Natur betrachtet. Der Pistolenkrebs (Alpheus heterochaelis) erzeugt laute Knalle
unter Wasser durch schnelles Zusammenklappen seiner Schere. Die kraftvollen Laute
werden zur Kommunikation untereinander verwendet, aber auch kleine Beutetiere
können dadurch geötet werden. Beim Schließen der Schere wird ein Wasserstrahl
ausgestoßen. Während die Wassergeschwindigkeit ansteigt, sinkt der Wasserdruck.
Dadurch entsteht eine Kavitationsblase, die auf eine Größe von einigen Millimetern
anwachsen kann. Experimente haben gezeigt, daß der Knall allein durch die Implo-
sion dieser Blase erzeugt wird, und nicht durch das Zusammenschlagen der Schere,
wie man zunächst glaubte. Ein Modell für die Blasendynamik aufgrund der Rayleigh-
Plesset Gleichung wird entwickelt. Die Ergebnisse des Modells für die zeitliche En-
twicklung des Blasenradius’ und des emittierten Schalls stimmen bemerkenswert gut
mit den experimentellen Daten überein.
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